**Linear Partial Differential Equations and Fourier Theory**

by Marcus Pivato

**Publisher**: Cambridge University Press 2005**ISBN/ASIN**: 0521136598**ISBN-13**: 9780521136594**Number of pages**: 619

**Description**:

This is a textbook for an introductory course on linear partial differential equations and initial/boundary value problems. It also provides a mathematically rigorous introduction to basic Fourier analysis, which is the main tool used to solve linear PDEs in Cartesian coordinates. Finally, it introduces basic functional analysis. This is necessary to rigorously characterize the convergence of Fourier series, and also to discuss eigenfunctions for linear differential operators.

Download or read it online for free here:

**Download link**

(13MB, PDF)

## Similar books

**Contributions to Fourier Analysis**

by

**A. Zygmund, et al.**-

**Princeton University Press**

In the theory of convergence and summability, emphasis is placed on the phenomenon of localization whenever such occurs, and in the present paper a certain aspect of this phenomenon will be studied for the problem of best approximation as well.

(

**2905**views)

**Harmonic Function Theory**

by

**Sheldon Axler, Paul Bourdon, Wade Ramey**-

**Springer**

A book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the text. The authors have taken care to motivate concepts and simplify proofs.

(

**9344**views)

**Spherical Harmonics in p Dimensions**

by

**Christopher Frye, Costas J. Efthimiou**-

**arXiv**

The authors prepared this booklet in order to make several useful topics from the theory of special functions, in particular the spherical harmonics and Legendre polynomials for any dimension, available to physics or mathematics undergraduates.

(

**4750**views)

**Introduction to the Theory of Fourier's Series and Integrals**

by

**H. S. Carslaw**-

**Macmillan and co.**

An introductory explanation of the theory of Fourier's series. It covers tests for uniform convergence of series, a thorough treatment of term-by-term integration and second theorem of mean value, enlarged sets of examples on infinite series, etc.

(

**1420**views)