Logo

Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory

Small book cover: Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory

Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory
by

Publisher: American Mathematical Society
Number of pages: 85

Description:
We consider some mathematical questions about Boltzmann equations for quantum particles, relativistic or non relativistic. Relevant particular cases such as Bose, Bose-Fermi, and photon-electron gases are studied. We also consider some simplifications such as the isotropy of the distribution functions and the asymptotic limits.

Download or read it online for free here:
Download link
(560KB, PDF)

Similar books

Book cover: Introduction to Statistical PhysicsIntroduction to Statistical Physics
by - ENS Lyon
This introductory text was aimed at giving a basic knowledge of the concepts and methods of statistical physics to the readers, so that they could later on follow more advanced lectures on diverse topics in the field of complex systems.
(12072 views)
Book cover: Statistical Physics of FieldsStatistical Physics of Fields
by - MIT
Topics: The hydrodynamic limit and classical field theories; Phase transitions and broken symmetries: universality, correlation functions, and scaling theory; The renormalization approach to collective phenomena; Dynamic critical behavior; etc.
(9590 views)
Book cover: Statistical Mechanics of ParticlesStatistical Mechanics of Particles
by - MIT
Basic principles are examined: the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Postulates of classical statistical mechanics, microcanonical, canonical, and grand canonical distributions; lattice vibrations; etc.
(8011 views)
Book cover: Thermal and Statistical PhysicsThermal and Statistical Physics
by - Princeton University Press
A text on two related subjects: thermodynamics and statistical mechanics. Computer simulations and numerical calculations are used in a variety of contexts. The book brings some of the recent advances in research into the undergraduate curriculum.
(19567 views)