Logo

Statistical Mechanics of Particles

Small book cover: Statistical Mechanics of Particles

Statistical Mechanics of Particles
by

Publisher: MIT
Number of pages: 161

Description:
Basic principles are examined: the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Postulates of classical statistical mechanics, microcanonical, canonical, and grand canonical distributions; applications to lattice vibrations, ideal gas, photon gas. Quantum statistical mechanics; Fermi and Bose systems. Interacting systems: cluster expansions, van der Waal's gas, and mean-field theory.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Advanced Topics of Theoretical Physics II: The statistical properties of matterAdvanced Topics of Theoretical Physics II: The statistical properties of matter
by - TU Clausthal
The table of contents: Transition-state theory; Diffusion; Monte Carlo Method; Quantum Monte Carlo; Decoherence; Notes on the Interpretation of Quantum Mechanics; Irreversible Thermodynamics; Transport; Interacting Systems and Phase Transitions; etc.
(6272 views)
Book cover: Lecture Notes in Statistical Mechanics and MesoscopicsLecture Notes in Statistical Mechanics and Mesoscopics
by - arXiv
These are notes for quantum and statistical mechanics courses. Topics covered: master equations; non-equilibrium processes; fluctuation theorems; linear response theory; adiabatic transport; the Kubo formalism; scattering approach to mesoscopics.
(8185 views)
Book cover: Statistical Physics IIStatistical Physics II
by - University of Guelph
From the table of contents: Review of thermodynamics; Statistical mechanics of isolated systems; Statistical mechanics of interacting systems; Information theory; Paramagnetism; Quantum statistics of ideal gases; Black-body radiation.
(10294 views)
Book cover: Statistical Field TheoryStatistical Field Theory
by - University of Cambridge
These notes are concerned with the physics of phase transitions: the phenomenon that in particular environments, many systems exhibit singularities in the thermodynamic variables which best describe the macroscopic state of the system.
(9542 views)