Logo

Basic Analysis Gently Done: Topological Vector Spaces

Small book cover: Basic Analysis Gently Done: Topological Vector Spaces

Basic Analysis Gently Done: Topological Vector Spaces
by

Publisher: King's College, London
Number of pages: 129

Description:
These notes are based on lectures given at King's College London (as part of the Mathematics MSc program). The approach here is to discuss topological vector spaces - with normed spaces considered as special cases. Contents: Topological Spaces; Nets; Product Spaces; Separation; Vector Spaces; Topological Vector Spaces; Locally Convex Topological Vector Spaces; Banach Spaces; The Dual Space of a Normed Space; Frechet Spaces.

Download or read it online for free here:
Read online
(online reading)

Similar books

Book cover: C*-algebraic Methods in Spectral TheoryC*-algebraic Methods in Spectral Theory
by - Nagoya University
From the table of contents: Linear operators on a Hilbert space; C*-algebras; Crossed product C*-algebras; Schroedinger operators and essential spectrum; Twisted crossed product C*-algebras; Pseudodifferential calculus; Magnetic systems.
(9853 views)
Book cover: Lectures on Cyclic HomologyLectures on Cyclic Homology
by - Tata Institute of Fundamental Research
Contents: Exact Couples and the Connes Exact Couple; Abelianization and Hochschild Homology; Cyclic Homology and the Connes Exact Couple; Cyclic Homology and Lie Algebra Homology; Mixed Complexes, the Connes Operator B; and more.
(9478 views)
Book cover: Linear Functional AnalysisLinear Functional Analysis
by - Macquarie University
An introduction to the basic ideas in linear functional analysis: metric spaces; connectedness, completeness and compactness; normed vector spaces; inner product spaces; orthogonal expansions; linear functionals; linear transformations; etc.
(16114 views)
Book cover: Functional Analysis Lecture NotesFunctional Analysis Lecture Notes
by - University of East Anglia
Lecture notes for a 3rd year undergraduate course in functional analysis. By the end of the course, you should have a good understanding of normed vector spaces, Hilbert and Banach spaces, fixed point theorems and examples of function spaces.
(11538 views)