Basic Analysis Gently Done: Topological Vector Spaces

Small book cover: Basic Analysis Gently Done: Topological Vector Spaces

Basic Analysis Gently Done: Topological Vector Spaces

Publisher: King's College, London
Number of pages: 129

These notes are based on lectures given at King's College London (as part of the Mathematics MSc program). The approach here is to discuss topological vector spaces - with normed spaces considered as special cases. Contents: Topological Spaces; Nets; Product Spaces; Separation; Vector Spaces; Topological Vector Spaces; Locally Convex Topological Vector Spaces; Banach Spaces; The Dual Space of a Normed Space; Frechet Spaces.

Download or read it online for free here:
Read online
(online reading)

Similar books

Book cover: Functional Analysis with ApplicationsFunctional Analysis with Applications
by - arXiv
This book at the beginning graduate level will help students with primary interests elsewhere to acquire a facility with tools of a functional analytic flavor, say in harmonic analysis, numerical analysis, stochastic processes, or in physics.
Book cover: Global Analysis: Functional Analysis ExamplesGlobal Analysis: Functional Analysis Examples
by - BookBoon
From the table of contents: Metric spaces; Topology; Continuous mappings; Sequences; Semi-continuity; Connected sets, differentiation; Normed vector spaces and integral operators; Differentiable mappings; Complete metric spaces; and more.
Book cover: Functional AnalysisFunctional Analysis
by - arXiv
Notes from a course which covered themes in functional analysis and operator theory, with an emphasis on topics of special relevance to such applications as representation theory, harmonic analysis, mathematical physics, and stochastic integration.
Book cover: Introduction to Functional AnalysisIntroduction to Functional Analysis
by - University of Leeds
Contents: Fourier Series; Basics of Linear Spaces; Orthogonality; Fourier Analysis; Duality of Linear Spaces; Operators; Spectral Theory; Compactness; The spectral theorem for compact normal operators; Applications to integral equations; etc.