**Congruence Lattices of Finite Algebras**

by William DeMeo

**Publisher**: arXiv 2012**Number of pages**: 130

**Description**:

In this work, we review a number of methods for finding a finite algebra with a given congruence lattice, including searching for intervals in subgroup lattices. We also consider methods for proving that algebras with a given congruence lattice exist without actually constructing them. By combining these well known methods with a new method we have developed, we prove that with one possible exception every lattice with at most seven elements is isomorphic to the congruence lattice of a finite algebra.

Download or read it online for free here:

**Download link**

(980KB, PDF)

## Similar books

**An Introduction to the Theory of Groups of Finite Order**

by

**Harold Hilton**-

**Oxford Clarendon Press**

This book aims at introducing the reader to more advanced treatises and original papers on Groups of finite order. The subject requires for its study only an elementary knowledge of Algebra. I have tried to lighten for him the initial difficulties.

(

**6382**views)

**Galois Groups and Fundamental Groups**

by

**Leila Schneps**-

**Cambridge University Press**

This book contains eight articles which focus on presenting recently developed new aspects of the theory of Galois groups and fundamental groups, avoiding classical aspects which have already been developed at length in the standard literature.

(

**13611**views)

**Galois Groups and Fundamental Groups**

by

**David Meredith**-

**San Francisco State University**

This course brings together two areas of mathematics that each concern symmetry -- symmetry in algebra, in the case of Galois theory; and symmetry in geometry, in the case of fundamental groups. Prerequisites are courses in algebra and analysis.

(

**11120**views)

**Algebraic Groups, Lie Groups, and their Arithmetic Subgroups**

by

**J. S. Milne**

This work is a modern exposition of the theory of algebraic group schemes, Lie groups, and their arithmetic subgroups. Algebraic groups are groups defined by polynomials. Those in this book can all be realized as groups of matrices.

(

**12476**views)