Logo

Combinatorial Group Theory by Charles F. Miller III

Small book cover: Combinatorial Group Theory

Combinatorial Group Theory
by

Publisher: University of Melbourne
Number of pages: 99

Description:
An early version of these notes was prepared for use by the participants in the Workshop on Algebra, Geometry and Topology held at the Australian National University. They have subsequently been updated and expanded many times for use by students in the subject Combinatorial Group Theory at the University of Melbourne.

Home page url

Download or read it online for free here:
Download link
(490KB, PDF)

Similar books

Book cover: Group TheoryGroup Theory
by
Contents: Basic Definitions and Results; Free Groups and Presentations; Coxeter Groups; Automorphisms and Extensions; Groups Acting on Sets; The Sylow Theorems; Subnormal Series; Solvable and Nilpotent Groups; Representations of Finite Groups.
(8056 views)
Book cover: Lectures on Semi-group Theory and its Application to Cauchy's Problem in Partial Differential EquationsLectures on Semi-group Theory and its Application to Cauchy's Problem in Partial Differential Equations
by - Tata Institute of Fundamental Research
In these lectures, we shall be concerned with the differentiability and the representation of one-parameter semi-groups of bounded linear operators on a Banach space and their applications to the initial value problem for differential equations.
(6905 views)
Book cover: Congruence Lattices of Finite AlgebrasCongruence Lattices of Finite Algebras
by - arXiv
We review a number of methods for finding a finite algebra with a given congruence lattice, including searching for intervals in subgroup lattices. We also consider methods for proving that algebras with a given congruence lattice exist...
(4548 views)
Book cover: Algebraic Groups, Lie Groups, and their Arithmetic SubgroupsAlgebraic Groups, Lie Groups, and their Arithmetic Subgroups
by
This work is a modern exposition of the theory of algebraic group schemes, Lie groups, and their arithmetic subgroups. Algebraic groups are groups defined by polynomials. Those in this book can all be realized as groups of matrices.
(7236 views)