Logo

Methods for Finding Zeros in Polynomials

Small book cover: Methods for Finding Zeros in Polynomials

Methods for Finding Zeros in Polynomials
by

Publisher: BookBoon
ISBN-13: 9788776819002
Number of pages: 122

Description:
Polynomials are the first class of functions that the student meets. Therefore, one may think that they are easy to handle. They are not in general! Topics as e.g. finding roots in a polynomial and the winding number are illustrated. Some of the topics only require an elementary knowledge of Calculus in one variable. Others rely heavily on Complex Functions Theory.

Home page url

Download or read it online for free here:
Download link
(3.3MB, PDF)

Similar books

Book cover: Complex AnalysisComplex Analysis
by
The textbook for an introductory course in complex analysis. It covers complex numbers and functions, integration, Cauchy's theorem, harmonic functions, Taylor and Laurent series, poles and residues, argument principle, and more.
(13062 views)
Book cover: Lectures on The Riemann Zeta-FunctionLectures on The Riemann Zeta-Function
by - Tata Institute of Fundamental Research
These notes provide an intorduction to the theory of the Riemann Zeta-function for students who might later want to do research on the subject. The Prime Number Theorem, Hardy's theorem, and Hamburger's theorem are the principal results proved here.
(9177 views)
Book cover: The Elementary Properties of the Elliptic FunctionsThe Elementary Properties of the Elliptic Functions
by - Macmillan
This textbook will supply the wants of those students who, for reasons connected with examinations or otherwise, wish to have a knowledge of the elements of Elliptic Functions, not including the Theory of Transformations and the Theta Functions.
(5064 views)
Book cover: Introduction to Complex AnalysisIntroduction to Complex Analysis
by - Macquarie University
Introduction to some of the basic ideas in complex analysis: complex numbers; foundations of complex analysis; complex differentiation; complex integrals; Cauchy's integral theorem; Cauchy's integral formula; Taylor series; Laurent series; etc.
(12978 views)