**Physics, Topology, Logic and Computation: A Rosetta Stone**

by John C. Baez, Mike Stay

**Publisher**: arXiv 2009**Number of pages**: 73

**Description**:

With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory, proof theory or computer science.

Download or read it online for free here:

**Download link**

(810KB, PDF)

Download mirrors:**Mirror 1**

## Similar books

**The Place of Partial Differential Equations in Mathematical Physics**

by

**Ganesh Prasad**-

**Patna University**

The reason for my choosing the partial differential equations as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. I give a brief historical account of the application of Mathematics to natural phenomena.

(

**404**views)

**Mathematical Physics: Problems and Solutions**

by

**G. S. Beloglazov, et al.**-

**Samara University Press**

The present Proceedings is intended to be used by the students of physical and mechanical-mathematical departments of the universities, who are interested in acquiring a deeper knowledge of the methods of mathematical and theoretical physics.

(

**5513**views)

**Lectures on Diffusion Problems and Partial Differential Equations**

by

**S.R.S. Varadhan**-

**Tata Institute of Fundamental Research**

Starting from Brownian Motion, the lectures quickly got into the areas of Stochastic Differential Equations and Diffusion Theory. The section on Martingales is based on additional lectures given by K. Ramamurthy of the Indian Institute of Science.

(

**4641**views)

**Euclidean Random Matrices and Their Applications in Physics**

by

**A. Goetschy, S.E. Skipetrov**-

**arXiv**

We review the state of the art of the theory of Euclidean random matrices, focusing on the density of their eigenvalues. Both Hermitian and non-Hermitian matrices are considered and links with simpler random matrix ensembles are established.

(

**3306**views)