**Physics, Topology, Logic and Computation: A Rosetta Stone**

by John C. Baez, Mike Stay

**Publisher**: arXiv 2009**Number of pages**: 73

**Description**:

With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory, proof theory or computer science.

Download or read it online for free here:

**Download link**

(810KB, PDF)

Download mirrors:**Mirror 1**

## Similar books

**Mathematics for Theoretical Physics**

by

**Jean Claude Dutailly**-

**arXiv**

This is a comprehensive and precise coverage of the mathematical concepts and tools used in present theoretical physics: differential geometry, Lie groups, fiber bundles, Clifford algebra, differential operators, normed algebras, connections, etc.

(

**10323**views)

**Lecture Notes on Mathematical Methods of Classical Physics**

by

**Vicente Cortes, Alexander S. Haupt**-

**arXiv**

Topics include Lagrangian Mechanics, Hamiltonian Mechanics, Hamilton-Jacobi Theory, Classical Field Theory formulated in the language of jet bundles, field theories such as sigma models, gauge theory, and Einstein's theory of general relativity.

(

**4613**views)

**Mathematics for Physics: A Guided Tour for Graduate Students**

by

**Michael Stone, Paul Goldbart**-

**Cambridge University Press**

This book provides a graduate-level introduction to the mathematics used in research in physics. It focuses on differential and integral equations, Fourier series, calculus of variations, differential geometry, topology and complex variables.

(

**14357**views)

**Lie Groups in Physics**

by

**G. 't Hooft, M. J. G. Veltman**-

**Utrecht University**

Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.

(

**10940**views)