**Inverse Problem Theory and Methods for Model Parameter Estimation**

by Albert Tarantola

**Publisher**: SIAM 2004**ISBN/ASIN**: 0898715725**ISBN-13**: 9780898715729**Number of pages**: 358

**Description**:

The first part of the book deals exclusively with discrete inverse problems with a finite number of parameters, while the second part of the book deals with general inverse problems. The book is directed to all scientists, including applied mathematicians, facing the problem of quantitative interpretation of experimental data in fields such as physics, chemistry, biology, image processing, and information sciences. Considerable effort has been made so that this book can serve either as a reference manual for researchers or as a textbook in a course for undergraduate or graduate students.

Download or read it online for free here:

**Download link**

(20MB, PDF)

## Similar books

**Reversible Markov Chains and Random Walks on Graphs**

by

**David Aldous, James Allen Fill**-

**University of California, Berkeley**

From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; etc.

(

**8612**views)

**Lectures on Probability, Statistics and Econometrics**

by

**Marco Taboga**-

**statlect.com**

This e-book is organized as a website that provides access to a series of lectures on fundamentals of probability, statistics and econometrics, as well as to a number of exercises on the same topics. The level is intermediate.

(

**7983**views)

**Principles of Data Analysis**

by

**Cappella Archive**-

**Prasenjit Saha**

This is a short book about the principles of data analysis. The emphasis is on why things are done rather than on exactly how to do them. If you already know something about the subject, then working through this book will deepen your understanding.

(

**8338**views)

**Bayesian Field Theory**

by

**J. C. Lemm**-

**arXiv.org**

A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.

(

**418**views)