Logo

Geometric Wave Equations by Stefan Waldmann

Small book cover: Geometric Wave Equations

Geometric Wave Equations
by

Publisher: arXiv
Number of pages: 279

Description:
In these lecture notes we discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed including a detailed treatment of the Cauchy problem on a globally hyperbolic manifold both for the smooth and finite order setting.

Home page url

Download or read it online for free here:
Download link
(3.5MB, PDF)

Similar books

Book cover: Synthetic Geometry of ManifoldsSynthetic Geometry of Manifolds
by - University of Aarhus
This textbook can be used as a non-technical and geometric gateway to many aspects of differential geometry. The audience of the book is anybody with a reasonable mathematical maturity, who wants to learn some differential geometry.
(5720 views)
Book cover: Ricci Flow and the Poincare ConjectureRicci Flow and the Poincare Conjecture
by - American Mathematical Society
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.
(7143 views)
Book cover: A Geometric Approach to Differential FormsA Geometric Approach to Differential Forms
by - arXiv
This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.
(8758 views)
Book cover: Introduction to Evolution Equations in GeometryIntroduction to Evolution Equations in Geometry
by - arXiv
The author aimed at providing a first introduction to the main general ideas on the study of the Ricci flow, as well as guiding the reader through the steps of Kaehler geometry for the understanding of the complex version of the Ricci flow.
(4648 views)