**Geometric Wave Equations**

by Stefan Waldmann

**Publisher**: arXiv 2012**Number of pages**: 279

**Description**:

In these lecture notes we discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed including a detailed treatment of the Cauchy problem on a globally hyperbolic manifold both for the smooth and finite order setting.

Download or read it online for free here:

**Download link**

(3.5MB, PDF)

## Similar books

**Advances in Discrete Differential Geometry**

by

**Alexander I. Bobenko (ed.)**-

**Springer**

This is the book on a newly emerging field of discrete differential geometry. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics.

(

**1080**views)

**Noncompact Harmonic Manifolds**

by

**Gerhard Knieper, Norbert Peyerimhoff**-

**arXiv**

We provide a survey on recent results on noncompact simply connected harmonic manifolds, and we also prove many new results, both for general noncompact harmonic manifolds and for noncompact harmonic manifolds with purely exponential volume growth.

(

**2398**views)

**Gauge Theory for Fiber Bundles**

by

**Peter W. Michor**-

**Universitaet Wien**

Gauge theory usually investigates the space of principal connections on a principal fiber bundle (P,p,M,G) and its orbit space under the action of the gauge group (called the moduli space), which is the group of all principal bundle automorphisms...

(

**3965**views)

**Projective and Polar Spaces**

by

**Peter J. Cameron**-

**Queen Mary College**

The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The treatment of these themes blends the descriptive with the axiomatic.

(

**6493**views)