Logo

Geometric Wave Equations by Stefan Waldmann

Small book cover: Geometric Wave Equations

Geometric Wave Equations
by

Publisher: arXiv
Number of pages: 279

Description:
In these lecture notes we discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed including a detailed treatment of the Cauchy problem on a globally hyperbolic manifold both for the smooth and finite order setting.

Home page url

Download or read it online for free here:
Download link
(3.5MB, PDF)

Similar books

Book cover: Ricci Flow and the Poincare ConjectureRicci Flow and the Poincare Conjecture
by - American Mathematical Society
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.
(6698 views)
Book cover: Discrete Differential Geometry: An Applied IntroductionDiscrete Differential Geometry: An Applied Introduction
by - Columbia University
This new and elegant area of mathematics has exciting applications, as this text demonstrates by presenting practical examples in geometry processing (surface fairing, parameterization, and remeshing) and simulation (of cloth, shells, rods, fluids).
(8599 views)
Book cover: Algebraic geometry and projective differential geometryAlgebraic geometry and projective differential geometry
by - arXiv
Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.
(9738 views)
Book cover: Synthetic Differential GeometrySynthetic Differential Geometry
by - Cambridge University Press
Synthetic differential geometry is a method of reasoning in differential geometry and calculus. This book is the second edition of Anders Kock's classical text, many notes have been included commenting on new developments.
(7583 views)