Logo

Geometric Wave Equations by Stefan Waldmann

Small book cover: Geometric Wave Equations

Geometric Wave Equations
by

Publisher: arXiv
Number of pages: 279

Description:
In these lecture notes we discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed including a detailed treatment of the Cauchy problem on a globally hyperbolic manifold both for the smooth and finite order setting.

Home page url

Download or read it online for free here:
Download link
(3.5MB, PDF)

Similar books

Book cover: Principles of Differential GeometryPrinciples of Differential Geometry
by - viXra
A collection of notes about differential geometry prepared as part of tutorials about topics and applications related to tensor calculus. They can be used as a reference for a first course on the subject or as part of a course on tensor calculus.
(2507 views)
Book cover: An introductory course in differential geometry and the Atiyah-Singer index theoremAn introductory course in differential geometry and the Atiyah-Singer index theorem
by - Binghamton University
This is a lecture-based class on the Atiyah-Singer index theorem, proved in the 60's by Sir Michael Atiyah and Isadore Singer. Their work on this theorem lead to a joint Abel prize in 2004. Requirements: Knowledge of topology and manifolds.
(7635 views)
Book cover: Synthetic Differential GeometrySynthetic Differential Geometry
by - Cambridge University Press
Synthetic differential geometry is a method of reasoning in differential geometry and calculus. This book is the second edition of Anders Kock's classical text, many notes have been included commenting on new developments.
(9187 views)
Book cover: Synthetic Geometry of ManifoldsSynthetic Geometry of Manifolds
by - University of Aarhus
This textbook can be used as a non-technical and geometric gateway to many aspects of differential geometry. The audience of the book is anybody with a reasonable mathematical maturity, who wants to learn some differential geometry.
(6840 views)