Lectures on Birational Geometry

Small book cover: Lectures on Birational Geometry

Lectures on Birational Geometry

Publisher: arXiv
Number of pages: 85

Lecture notes of a course on birational geometry. Topics covered: introduction into the subject, contractions and extremal rays, pairs and singularities, Kodaira dimension, minimal model program, cone and contraction, vanishing, base point freeness, flips and local finite generation, pl flips and extension theorems, existence of minimal models and Mori fibre spaces, global finite generation, etc.

Home page url

Download or read it online for free here:
Download link
(630KB, PDF)

Similar books

Book cover: Algebraic geometry and projective differential geometryAlgebraic geometry and projective differential geometry
by - arXiv
Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.
Book cover: Lectures on An Introduction to Grothendieck's Theory of the Fundamental GroupLectures on An Introduction to Grothendieck's Theory of the Fundamental Group
by - Tata Institute of Fundamental Research
The purpose of this text is to give an introduction to Grothendieck's theory of the fundamental group in algebraic geometry with the study of the fundamental group of an algebraic curve over an algebraically closed field of arbitrary characteristic.
Book cover: Multiplication of Vectors and Structure of 3D Euclidean SpaceMultiplication of Vectors and Structure of 3D Euclidean Space
by - viXra
This text is a motivational survey of geometric algebra in 3D. The intention here was to use simple examples and reader is referred to the independent problem solving. The active reading of text is recommended, with paper and pencil in hand.
Book cover: Algebraic GeometryAlgebraic Geometry
These notes are an introduction to the theory of algebraic varieties. In contrast to most such accounts they study abstract algebraic varieties, not just subvarieties of affine and projective space. This approach leads naturally to scheme theory.