**Differential Calculus**

by Pierre Schapira

**Publisher**: Université Paris VI 2011**Number of pages**: 60

**Description**:

The aim of these Notes is to provide a short and self-contained presentation of the main concepts of differential calculus. Our point of view is to work in the abstract setting of a real normed space, and when necessary to specialize to the case of a finite dimensional space endowed with a basis.

Download or read it online for free here:

**Download link**

(360KB, PDF)

## Similar books

**Homeomorphisms in Analysis**

by

**Casper Goffman, at al.**-

**American Mathematical Society**

This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.

(

**10416**views)

**An Introduction to Real Analysis**

by

**John K. Hunter**-

**University of California Davis**

These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.

(

**2117**views)

**Introduction to Infinitesimal Analysis: Functions of One Real Variable**

by

**N. J. Lennes**-

**John Wiley & Sons**

This volume is designed as a reference book for a course dealing with the fundamental theorems of infinitesimal calculus in a rigorous manner. The book may also be used as a basis for a rather short theoretical course on real functions.

(

**8681**views)

**Topics in Real and Functional Analysis**

by

**Gerald Teschl**-

**Universitaet Wien**

This manuscript provides a brief introduction to Real and (linear and nonlinear) Functional Analysis. It covers basic Hilbert and Banach space theory as well as basic measure theory including Lebesgue spaces and the Fourier transform.

(

**10114**views)