**Step-by-Step BS to PhD Math/Physics**

by Alex Alaniz

**Publisher**: UC Riverside 2013**Number of pages**: 323

**Description**:

These are step-by-verifiable-step notes which are designed to help students with a year of calculus based physics who are about to enroll in ordinary differential equations go all the way to doctoral foundations in either mathematics and more so in physics with much reduced mystery. Abstract algebra, topology (local and global) folds into a useful, intuitive toolset for ordinary differential equations and partial differential equations, be they linear or nonlinear.

Download or read it online for free here:

**Download link**

(2.8MB, PDF)

## Similar books

**Quantum Spin Systems on Infinite Lattices**

by

**Pieter Naaijkens**-

**arXiv**

These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites.

(

**2856**views)

**Lie Systems: Theory, Generalisations, and Applications**

by

**J.F. Carinena, J. de Lucas**-

**arXiv**

Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping.

(

**4918**views)

**Lectures on Nonlinear Waves And Shocks**

by

**Cathleen S. Morawetz**-

**Tata Institute Of Fundamental Research**

Introduction to certain aspects of gas dynamics concentrating on some of the most important nonlinear problems, important not only from the engineering or computational point of view but also because they offer great mathematical challenges.

(

**4690**views)

**Differential Equations of Mathematical Physics**

by

**Max Lein**-

**arXiv**

These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.

(

**3919**views)