Logo

Floer Homology, Gauge Theory, and Low Dimensional Topology

Large book cover: Floer Homology, Gauge Theory, and Low Dimensional Topology

Floer Homology, Gauge Theory, and Low Dimensional Topology
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821838458
ISBN-13: 9780821838457
Number of pages: 314

Description:
Mathematical gauge theory studies connections on principal bundles, or, more precisely, the solution spaces of certain partial differential equations for such connections. Historically, these equations have come from mathematical physics, and play an important role in the description of the electro-weak and strong nuclear forces.

Download or read it online for free here:
Download link
(3.1MB, PDF)

Similar books

Book cover: Optimization Algorithms on Matrix ManifoldsOptimization Algorithms on Matrix Manifolds
by - Princeton University Press
Many science and engineering problems can be rephrased as optimization problems on matrix search spaces endowed with a manifold structure. This book shows how to exploit the structure of such problems to develop efficient numerical algorithms.
(18834 views)
Book cover: Lecture Notes on Seiberg-Witten InvariantsLecture Notes on Seiberg-Witten Invariants
by - Springer
A streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure.
(11125 views)
Book cover: The Convenient Setting of Global AnalysisThe Convenient Setting of Global Analysis
by - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
(14476 views)
Book cover: ManifoldsManifolds
by - King's College London
From the table of contents: Manifolds (Elementary Topology and Definitions); The Tangent Space; Maps Between Manifolds; Vector Fields; Tensors; Differential Forms; Connections, Curvature and Metrics; Riemannian Manifolds.
(10660 views)