**From D-modules to Deformation Quantization Modules**

by Pierre Schapira

**Publisher**: UPMC 2012**Number of pages**: 89

**Description**:

The aim of these lecture notes is first to introduce the reader to the theory of D-modules in the analytical setting and also to make a link with the theory of deformation quantization (DQ for short) in the complex setting.

Download or read it online for free here:

**Download link**

(520KB, PDF)

## Similar books

**Computations in Algebraic Geometry with Macaulay 2**

by

**D. Eisenbud, D. Grayson, M. Stillman, B. Sturmfels**-

**Springer**

This book presents algorithmic tools for algebraic geometry and experimental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out.

(

**12170**views)

**Lectures on Siegel's Modular Functions**

by

**H. Maass**-

**Tata Institute of Fundamental Research**

Contents: Modular Group of Degree n; Symplectic group of degree n; Reduction Theory of Positive Definite Quadratic Forms; Fundamental Domain of the Modular Group of Degree n; Modular Forms of Degree n; Algebraic dependence of modular forms; etc.

(

**11531**views)

**Lectures on Curves on Rational and Unirational Surfaces**

by

**Masayoshi Miyanishi**-

**Tata Institute of Fundamental Research**

From the table of contents: Introduction; Geometry of the affine line (Locally nilpotent derivations, Algebraic pencils of affine lines, Flat fibrations by the affine line); Curves on an affine rational surface; Unirational surfaces; etc.

(

**9763**views)

**Abelian Varieties**

by

**J. S. Milne**

Introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.

(

**12985**views)