From D-modules to Deformation Quantization Modules
by Pierre Schapira
Publisher: UPMC 2012
Number of pages: 89
Description:
The aim of these lecture notes is first to introduce the reader to the theory of D-modules in the analytical setting and also to make a link with the theory of deformation quantization (DQ for short) in the complex setting.
Download or read it online for free here:
Download link
(520KB, PDF)
Similar books
Computations in Algebraic Geometry with Macaulay 2
by D. Eisenbud, D. Grayson, M. Stillman, B. Sturmfels - Springer
This book presents algorithmic tools for algebraic geometry and experimental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out.
(12170 views)
by D. Eisenbud, D. Grayson, M. Stillman, B. Sturmfels - Springer
This book presents algorithmic tools for algebraic geometry and experimental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out.
(12170 views)
Lectures on Siegel's Modular Functions
by H. Maass - Tata Institute of Fundamental Research
Contents: Modular Group of Degree n; Symplectic group of degree n; Reduction Theory of Positive Definite Quadratic Forms; Fundamental Domain of the Modular Group of Degree n; Modular Forms of Degree n; Algebraic dependence of modular forms; etc.
(11531 views)
by H. Maass - Tata Institute of Fundamental Research
Contents: Modular Group of Degree n; Symplectic group of degree n; Reduction Theory of Positive Definite Quadratic Forms; Fundamental Domain of the Modular Group of Degree n; Modular Forms of Degree n; Algebraic dependence of modular forms; etc.
(11531 views)
Lectures on Curves on Rational and Unirational Surfaces
by Masayoshi Miyanishi - Tata Institute of Fundamental Research
From the table of contents: Introduction; Geometry of the affine line (Locally nilpotent derivations, Algebraic pencils of affine lines, Flat fibrations by the affine line); Curves on an affine rational surface; Unirational surfaces; etc.
(9763 views)
by Masayoshi Miyanishi - Tata Institute of Fundamental Research
From the table of contents: Introduction; Geometry of the affine line (Locally nilpotent derivations, Algebraic pencils of affine lines, Flat fibrations by the affine line); Curves on an affine rational surface; Unirational surfaces; etc.
(9763 views)
Abelian Varieties
by J. S. Milne
Introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.
(12985 views)
by J. S. Milne
Introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.
(12985 views)