Logo

Analysis on Homogeneous Spaces

Small book cover: Analysis on Homogeneous Spaces

Analysis on Homogeneous Spaces
by

Publisher: Royal Institute of Technology Stockholm
Number of pages: 108

Description:
The main goal of these notes is to give a proof of the basic facts of harmonic analysis on compact symmetric spaces and then to apply these to concrete problems involving things such as the Radon and related transforms on these spaces.

Home page url

Download or read it online for free here:
Download link
(780KB, PDF)

Similar books

Book cover: Lectures on Torus Embeddings and ApplicationsLectures on Torus Embeddings and Applications
by - Tata Institute of Fundamental Research
Theory of torus embeddings has find many applications. The point of the theory lies in its ability of translating meaningful algebra-geometric phenomena into very simple statements about the combinatorics of cones in affine space over the reals.
(5591 views)
Book cover: Introduction to Algebraic Topology and Algebraic GeometryIntroduction to Algebraic Topology and Algebraic Geometry
by
Introduction to algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for algebraically integrable systems and the geometry of quantum field and string theory.
(6858 views)
Book cover: Classical Algebraic Geometry: A Modern ViewClassical Algebraic Geometry: A Modern View
by - Cambridge University Press
The main purpose of the present treatise is to give an account of some of the topics in algebraic geometry which while having occupied the minds of many mathematicians in previous generations have fallen out of fashion in modern times.
(4973 views)
Book cover: An Introduction to Semialgebraic GeometryAn Introduction to Semialgebraic Geometry
by - Universite de Rennes
Semialgebraic geometry is the study of sets of real solutions of systems of polynomial equations and inequalities. These notes present the first results of semialgebraic geometry and related algorithmic issues. Their content is by no means original.
(9059 views)