An introduction to Noncommutative Projective Geometry

Small book cover: An introduction to Noncommutative Projective Geometry

An introduction to Noncommutative Projective Geometry

Publisher: arXiv
Number of pages: 55

These notes are an expanded version of the author's lectures at the graduate workshop 'Noncommutative Algebraic Geometry' at the Mathematical Sciences Research Institute in June 2012. The main topics discussed are Artin-Schelter regular algebras, point modules, and the noncommutative projective scheme associated to a graded algebra.

Home page url

Download or read it online for free here:
Download link
(610KB, PDF)

Similar books

Book cover: Set Theoretic Approach to Algebraic Structures in MathematicsSet Theoretic Approach to Algebraic Structures in Mathematics
by - Educational Publisher
This book brings out how sets in algebraic structures can be used to construct the most generalized algebraic structures, like set linear algebra / vector space, set ideals in groups and rings and semigroups, and topological set vector spaces.
Book cover: Lie AlgebrasLie Algebras
The Campbell Baker Hausdorff formula, sl(2) and its representations, classical simple algebras, Engel-Lie-Cartan-Weyl, conjugacy of Cartan subalgebras, simple finite dimensional algebras, cyclic highest weight modules, Serreā€™s theorem, and more.
Book cover: Clifford Algebra, Geometric Algebra, and ApplicationsClifford Algebra, Geometric Algebra, and Applications
by - arXiv
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
Book cover: New Directions in Hopf AlgebrasNew Directions in Hopf Algebras
by - Cambridge University Press
Hopf algebras have important connections to quantum theory, Lie algebras, knot and braid theory, operator algebras, and other areas. The book gives a clear picture of the current trends, with a focus on what will be important in future research.