**An introduction to Noncommutative Projective Geometry**

by D. Rogalski

**Publisher**: arXiv 2014**Number of pages**: 55

**Description**:

These notes are an expanded version of the author's lectures at the graduate workshop 'Noncommutative Algebraic Geometry' at the Mathematical Sciences Research Institute in June 2012. The main topics discussed are Artin-Schelter regular algebras, point modules, and the noncommutative projective scheme associated to a graded algebra.

Download or read it online for free here:

**Download link**

(610KB, PDF)

## Similar books

**A Treatise on the Theory of Invariants**

by

**Oliver E. Glenn**-

**Project Gutenberg**

The object of this book is to present in a volume of medium size the fundamental principles and processes and a few of the multitudinous applications of invariant theory, with emphasis upon both the nonsymbolical and the symbolical method.

(

**11789**views)

**Infinite-dimensional Lie Algebras**

by

**Iain Gordon**-

**University of Edinburgh**

Contents: Central extensions; Virasoro algebra; Heisenberg algebra; Enveloping algebras; Hands-on loop and affine algebras; Simple Lie algebras; Kac-Moody Lie algebras; Dynkin diagrams; Forms, Weyl groups and roots; Root spaces; Affine Lie algebras.

(

**13068**views)

**Clifford Algebra, Geometric Algebra, and Applications**

by

**Douglas Lundholm, Lars Svensson**-

**arXiv**

These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.

(

**15292**views)

**Smarandache Loops**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

The purpose of this book entirely lies in the study, introduction and examination of the Smarandache loops. We expect the reader to have a good background in algebra and more specifically a strong foundation in loops and number theory.

(

**11209**views)