**Complex Fluids: The Physics of Emulsions**

by M. E. Cates

**Publisher**: arXiv 2012**Number of pages**: 43

**Description**:

These lectures start with the mean field theory for a symmetric binary fluid mixture, addressing interfacial tension, the stress tensor, and the equations of motion (Model H). We then consider the phase separation kinetics of such a mixture: coalescence, Ostwald ripening, its prevention by trapped species, coarsening of bicontinuous states, and the role of shear flow. The third topic addressed is the stabilization of emulsions by using surfactants to reduce or even eliminate the interfacial tension between phases.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**Intermediate Fluid Mechanics**

by

**Joseph M. Powers**-

**University of Notre Dame**

Lecture notes on intermediate fluid mechanics: Derivation of governing equations of mass, momentum, and energy for a viscous, compressible fluid; general survey of vortex dynamics, potential flow, viscous flow, and compressible flow.

(

**12367**views)

**Solution of the Cauchy problem for the Navier - Stokes and Euler equations**

by

**A. Tsionskiy, M. Tsionskiy**-

**arXiv**

Solutions of the Navier-Stokes and Euler equations with initial conditions (Cauchy problem) for two and three dimensions are obtained in the convergence series form by the iterative method using the Fourier and Laplace transforms in this paper.

(

**7056**views)

**Basics of Fluid Mechanics**

by

**Genick Bar-Meir**

Introductory textbook for the fluid mechanics in undergraduate classes for engineering/science students. It can be used as a reference book for people who have at least some basics knowledge of science areas such as calculus, physics, etc.

(

**24414**views)

**The Secret of Sailing**

by

**Johan Hoffman, Johan Jansson, Claes Johnson**

This book presents a mathematical theory of sailing based on a combination of analysis and computation. This new theory is fundamentally different from that envisioned in the classical theories for lift in inviscid flow and for drag in viscous flow.

(

**8960**views)