Logo

An Introduction to the Algebra of Quantics

Large book cover: An Introduction to the Algebra of Quantics

An Introduction to the Algebra of Quantics
by

Publisher: The Clarendon Press
ISBN/ASIN: B005GE94HU
Number of pages: 444

Description:
The primary object of this book is that of explaining with all the clearness at my command the leading principles of invariant algebra, in the hope of making it evident to the junior student that the subject is attractive as well as important, and that its early difficulties are only such as he can readily surmount.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Hopf Algebras, Quantum Groups and Yang-Baxter EquationsHopf Algebras, Quantum Groups and Yang-Baxter Equations
by - MDPI AG
Various aspects of the Yang-Baxter equation, related algebraic structures, and applications are presented. The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed.
(459 views)
Book cover: An introduction to Algebra and TopologyAn introduction to Algebra and Topology
by - University of Luxemburg
These lecture notes are an elementary introduction to the language of categories and sheaves. From the table of contents: Linear algebra over a ring; The language of categories; Sheaves (Flabby sheaves and soft sheaves, Cohomology of sheaves).
(6897 views)
Book cover: Universal Algebra for Computer ScienceUniversal Algebra for Computer Science
by - Wagner Mathematics
A text on universal algebra with a strong emphasis on applications and examples from computer science. The text introduces signatures, algebras, homomorphisms, initial algebras, free algebras, and illustrates them with interactive applications.
(11255 views)
Book cover: Smarandache LoopsSmarandache Loops
by - American Research Press
The purpose of this book entirely lies in the study, introduction and examination of the Smarandache loops. We expect the reader to have a good background in algebra and more specifically a strong foundation in loops and number theory.
(6332 views)