Logo

Knot Invariants and Higher Representation Theory

Small book cover: Knot Invariants and Higher Representation Theory

Knot Invariants and Higher Representation Theory
by

Publisher: arXiv
Number of pages: 87

Description:
We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel and Sussan for sl_n.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: High-dimensional Knot TheoryHigh-dimensional Knot Theory
by - Springer
This book is an introduction to high-dimensional knot theory. It uses surgery theory to provide a systematic exposition, and it serves as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.
(7462 views)
Book cover: Algebraic and Geometric SurgeryAlgebraic and Geometric Surgery
by - Oxford University Press
Surgery theory is the standard method for the classification of high-dimensional manifolds, where high means 5 or more. This book aims to be an entry point to surgery theory for a reader who already has some background in topology.
(4888 views)
Book cover: Ends of ComplexesEnds of Complexes
by - Cambridge University Press
The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of mapping tori and telescopes.
(4399 views)
Book cover: The Hauptvermutung Book: A Collection of Papers on the Topology of ManifoldsThe Hauptvermutung Book: A Collection of Papers on the Topology of Manifolds
by - Springer
The Hauptvermutung is the conjecture that any two triangulations of a polyhedron are combinatorially equivalent. This conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology.
(5067 views)