Logo

Knot Invariants and Higher Representation Theory

Small book cover: Knot Invariants and Higher Representation Theory

Knot Invariants and Higher Representation Theory
by

Publisher: arXiv
Number of pages: 87

Description:
We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel and Sussan for sl_n.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Algebraic L-theory and Topological ManifoldsAlgebraic L-theory and Topological Manifolds
by - Cambridge University Press
Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds.
(4681 views)
Book cover: E 'Infinite' Ring Spaces and E 'Infinite' Ring SpectraE 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra
by - Springer
The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.
(7242 views)
Book cover: Algebraic and Geometric SurgeryAlgebraic and Geometric Surgery
by - Oxford University Press
Surgery theory is the standard method for the classification of high-dimensional manifolds, where high means 5 or more. This book aims to be an entry point to surgery theory for a reader who already has some background in topology.
(5075 views)
Book cover: The Geometry and Topology of Three-ManifoldsThe Geometry and Topology of Three-Manifolds
by - Mathematical Sciences Research Institute
The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.
(12323 views)