**Algebraic L-theory and Topological Manifolds**

by A. A. Ranicki

**Publisher**: Cambridge University Press 2011**ISBN/ASIN**: 0521055210**Number of pages**: 365

**Description**:

Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.

Download or read it online for free here:

**Download link**

(1.3MB, PDF)

## Similar books

**CDBooK: Introduction to Vassiliev Knot invariants**

by

**S.Chmutov, S.Duzhin, J.Mostovoy**-

**Ohio State Universit**

An introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. Written for readers with no background in this area, and we care more about the basic notions than about more advanced material.

(

**6191**views)

**Lectures on Polyhedral Topology**

by

**John R. Stallings**-

**Tata Institute of Fundamental Research**

These notes contain: The elementary theory of finite polyhedra in real vector spaces; A theory of 'general position' (approximation of maps), based on 'non-degeneracy'. A theory of 'regular neighbourhoods' in arbitrary polyhedra; etc.

(

**4290**views)

**Notes on Basic 3-Manifold Topology**

by

**Allen Hatcher**

These pages are really just an early draft of the initial chapters of a real book on 3-manifolds. The text does contain a few things that aren't readily available elsewhere, like the Jaco-Shalen/Johannson torus decomposition theorem.

(

**5252**views)

**Surgical Methods in Rigidity**

by

**F.T. Farrell**-

**Springer**

This book is an introduction to the topological rigidity theorem for compact non-positively curved Riemannian manifolds. It contains a quick informal account of the background material from surgery theory and controlled topology prerequesite.

(

**2866**views)