**Algebraic L-theory and Topological Manifolds**

by A. A. Ranicki

**Publisher**: Cambridge University Press 2011**ISBN/ASIN**: 0521055210**Number of pages**: 365

**Description**:

Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.

Download or read it online for free here:

**Download link**

(1.3MB, PDF)

## Similar books

**The Geometry and Topology of Three-Manifolds**

by

**William P Thurston**-

**Mathematical Sciences Research Institute**

The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.

(

**12252**views)

**Notes on Basic 3-Manifold Topology**

by

**Allen Hatcher**

These pages are really just an early draft of the initial chapters of a real book on 3-manifolds. The text does contain a few things that aren't readily available elsewhere, like the Jaco-Shalen/Johannson torus decomposition theorem.

(

**5513**views)

**Algebraic and Geometric Topology**

by

**Andrew Ranicki, Norman Levitt, Frank Quinn**-

**Springer**

The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.

(

**10580**views)

**Diffeomorphisms of Elliptic 3-Manifolds**

by

**S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein**-

**arXiv**

The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.

(

**4337**views)