Logo

Algebraic L-theory and Topological Manifolds

Large book cover: Algebraic L-theory and Topological Manifolds

Algebraic L-theory and Topological Manifolds
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521055210
Number of pages: 365

Description:
Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.

Download or read it online for free here:
Download link
(1.3MB, PDF)

Similar books

Book cover: A Primer on Mapping Class GroupsA Primer on Mapping Class Groups
by - Princeton University Press
Our goal in this book is to explain as many important theorems, examples, and techniques as possible, as quickly and directly as possible, while at the same time giving (nearly) full details and keeping the text (nearly) selfcontained.
(6059 views)
Book cover: Geometric Topology: Localization, Periodicity and Galois SymmetryGeometric Topology: Localization, Periodicity and Galois Symmetry
by - Springer
In 1970, Sullivan circulated this set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts. The notes remain worth reading for the fresh picture they provide for geometric topology.
(4383 views)
Book cover: Surgery on Compact ManifoldsSurgery on Compact Manifolds
by - American Mathematical Society
This book represents an attempt to collect and systematize the methods and main applications of the method of surgery, insofar as compact (but not necessarily connected, simply connected or closed) manifolds are involved.
(5040 views)
Book cover: Knot Invariants and Higher Representation TheoryKnot Invariants and Higher Representation Theory
by - arXiv
We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...
(2796 views)