**Algebraic L-theory and Topological Manifolds**

by A. A. Ranicki

**Publisher**: Cambridge University Press 2011**ISBN/ASIN**: 0521055210**Number of pages**: 365

**Description**:

Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.

Download or read it online for free here:

**Download link**

(1.3MB, PDF)

## Similar books

**Ends of Complexes**

by

**Bruce Hughes, Andrew Ranicki**-

**Cambridge University Press**

The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of mapping tori and telescopes.

(

**9638**views)

**Combinatorial Knot Theory**

by

**Louis H. Kauffman**-

**University of Illinois at Chicago**

This book is an introduction to knot theory and to Witten's approach to knot theory via his functional integral. Contents: Topics in combinatorial knot theory; State Models and State Summations; Vassiliev Invariants and Witten's Functional Integral.

(

**11031**views)

**High-dimensional Knot Theory**

by

**Andrew Ranicki**-

**Springer**

This book is an introduction to high-dimensional knot theory. It uses surgery theory to provide a systematic exposition, and it serves as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.

(

**12831**views)

**The Geometry and Topology of Braid Groups**

by

**Jenny Wilson**-

**University of Michigan**

Contents: Five definitions of the braid group; The topology of Fn(C); The integral cohomology of the pure braid group; Generalizations of PBn and their cohomology; Transfer and twisted coefficients; Stability in the cohomology of braid groups; etc.

(

**4693**views)