Algebraic L-theory and Topological Manifolds

Large book cover: Algebraic L-theory and Topological Manifolds

Algebraic L-theory and Topological Manifolds

Publisher: Cambridge University Press
ISBN/ASIN: 0521055210
Number of pages: 365

Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.

Download or read it online for free here:
Download link
(1.3MB, PDF)

Similar books

Book cover: The Geometry and Topology of Three-ManifoldsThe Geometry and Topology of Three-Manifolds
by - Mathematical Sciences Research Institute
The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.
Book cover: Notes on Basic 3-Manifold TopologyNotes on Basic 3-Manifold Topology
These pages are really just an early draft of the initial chapters of a real book on 3-manifolds. The text does contain a few things that aren't readily available elsewhere, like the Jaco-Shalen/Johannson torus decomposition theorem.
Book cover: Algebraic and Geometric TopologyAlgebraic and Geometric Topology
by - Springer
The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.
Book cover: Diffeomorphisms of Elliptic 3-ManifoldsDiffeomorphisms of Elliptic 3-Manifolds
by - arXiv
The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.