Logo

Introduction to Spectral Theory of Schrödinger Operators

Small book cover: Introduction to Spectral Theory of Schrödinger Operators

Introduction to Spectral Theory of Schrödinger Operators
by

Publisher: Vinnitsa State Pedagogical University
Number of pages: 112

Description:
Contents: A bit of quantum mechanics; Operators in Hilbert spaces; Spectral theorem of self-adjoint operators; Compact operators and the Hilbert-Schmidt theorem; Perturbation of discrete spectrum; Variational principles; One-dimensional Schroedinger operator; Periodic Schroedinger operators; etc.

Home page url

Download or read it online for free here:
Download link
(700KB, PDF)

Similar books

Book cover: A Mathematics Primer for Physics Graduate StudentsA Mathematics Primer for Physics Graduate Students
by
The author summarizes most of the more advanced mathematical trickery seen in electrodynamics and quantum mechanics in simple and friendly terms with examples. Mathematical tools such as tensors or differential forms are covered in this text.
(25832 views)
Book cover: Navier-Stokes Equations: On the Existence and the Search Method for Global SolutionsNavier-Stokes Equations: On the Existence and the Search Method for Global Solutions
by - MiC
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.
(11604 views)
Book cover: Mathematical Methods of PhysicsMathematical Methods of Physics
- Wikibooks
A book on common techniques of applied mathematics that are often used in theoretical physics. It may be accessible to anyone with beginning undergraduate training in mathematics and physics. It is useful for anyone wishing to study advanced Physics.
(12356 views)
Book cover: Clifford Algebra, Geometric Algebra, and ApplicationsClifford Algebra, Geometric Algebra, and Applications
by - arXiv
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
(16286 views)