**Introduction to Spectral Theory of Schrödinger Operators**

by A. Pankov

**Publisher**: Vinnitsa State Pedagogical University 2006**Number of pages**: 112

**Description**:

Contents: A bit of quantum mechanics; Operators in Hilbert spaces; Spectral theorem of self-adjoint operators; Compact operators and the Hilbert-Schmidt theorem; Perturbation of discrete spectrum; Variational principles; One-dimensional Schroedinger operator; Periodic Schroedinger operators; etc.

Download or read it online for free here:

**Download link**

(700KB, PDF)

## Similar books

**Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions**

by

**Solomon I. Khmelnik**-

**MiC**

In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.

(

**4938**views)

**Lecture Notes on Quantum Brownian Motion**

by

**Laszlo Erdos**-

**arXiv**

Einstein's kinetic theory of the Brownian motion, based upon water molecules bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. It is a challenge to verify the diffusion from the Schroedinger equation.

(

**4444**views)

**A Window into Zeta and Modular Physics**

by

**Klaus Kirsten, Floyd L. Williams**-

**Cambridge University Press**

This book provides an introduction, with applications, to three interconnected mathematical topics: zeta functions in their rich variety; modular forms; vertex operator algebras. Applications of the material to physics are presented.

(

**5374**views)

**The Octonions**

by

**John C. Baez**-

**University of California**

The octonions are the largest of the four normed division algebras. The author describes them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups.

(

**12991**views)