Quantum Theory, Groups and Representations: An Introduction

Small book cover: Quantum Theory, Groups and Representations: An Introduction

Quantum Theory, Groups and Representations: An Introduction

Publisher: Columbia University
Number of pages: 396

These notes cover the basics of quantum mechanics, from a point of view emphasizing the role of unitary representations of Lie groups in the foundations of the subject. The approach to this material is simultaneously rather advanced, using crucially some fundamental mathematical structures normally only discussed in graduate mathematics courses, while at the same time trying to do this in as elementary terms as possible.

Home page url

Download or read it online for free here:
Download link
(2.8MB, PDF)

Similar books

Book cover: Mathematical Methods in Quantum MechanicsMathematical Methods in Quantum Mechanics
by - American Mathematical Society
This is a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required.
Book cover: Mathematical Tools of Quantum MechanicsMathematical Tools of Quantum Mechanics
by - Sissa, Trieste
The theory which is presented here is Quantum Mechanics as formulated in its essential parts on one hand by de Broglie and Schroedinger and on the other by Born, Heisenberg and Jordan with important contributions by Dirac and Pauli.
Book cover: Symplectic Geometry of Quantum NoiseSymplectic Geometry of Quantum Noise
by - arXiv
We discuss a quantum counterpart of certain constraints on Poisson brackets coming from 'hard' symplectic geometry. They can be interpreted in terms of the quantum noise of observables and their joint measurements in operational quantum mechanics.
Book cover: Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanicsLecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics
by - arXiv
A graduate-level introduction to C*-algebras, Hilbert C*-modules, vector bundles, and induced representations of groups and C*-algebras, with applications to quantization theory, phase space localization, and configuration space localization.