**Modern Algebraic Topology**

by D. G. Bourgin

**Publisher**: Macmillan 1963**ISBN/ASIN**: B0006AYEAQ**Number of pages**: 544

**Description**:

Contents: Preliminary algebraic background; Chain relationships; Fundamentals of the absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; Gratings; Fundamental omology relations and applications; Homological algebra; Uniqueness proofs and fixed point indices; etc.

Download or read it online for free here:

**Read online**

(online reading)

## Similar books

**scl**

by

**Danny Calegari**-

**Mathematical Society of Japan**

This is a comprehensive introduction to the theory of stable commutator length, an important subfield of quantitative topology, with substantial connections to 2-manifolds, dynamics, geometric group theory, bounded cohomology, symplectic topology.

(

**6692**views)

**Lectures on Etale Cohomology**

by

**J. S. Milne**

These are the notes for a course taught at the University of Michigan in 1989 and 1998. The emphasis is on heuristic arguments rather than formal proofs and on varieties rather than schemes. The notes also discuss the proof of the Weil conjectures.

(

**6239**views)

**Equivariant Stable Homotopy Theory**

by

**G. Jr. Lewis, J. P. May, M. Steinberger, J. E. McClure**-

**Springer**

Our purpose is to establish the foundations of equivariant stable homotopy theory. We shall construct a stable homotopy category of G-spectra,and use it to study equivariant duality, equivariant transfer, the Burnside ring, and related topics.

(

**10428**views)

**Introduction to Topological Groups**

by

**Dikran Dikranjan**-

**UCM**

These notes provide a brief introduction to topological groups with a special emphasis on Pontryaginvan Kampen's duality theorem for locally compact abelian groups. We give a completely self-contained elementary proof of the theorem.

(

**7211**views)