**Modern Algebraic Topology**

by D. G. Bourgin

**Publisher**: Macmillan 1963**ISBN/ASIN**: B0006AYEAQ**Number of pages**: 544

**Description**:

Contents: Preliminary algebraic background; Chain relationships; Fundamentals of the absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; Gratings; Fundamental omology relations and applications; Homological algebra; Uniqueness proofs and fixed point indices; etc.

Download or read it online for free here:

**Read online**

(online reading)

## Similar books

**The Adams-Novikov Spectral Sequence and the Homotopy Groups of Spheres**

by

**Paul Goerss**-

**Northwestern University**

Contents: The Adams spectral sequence; Classical calculations; The Adams-Novikov Spectral Sequence; Complex oriented homology theories; The height filtration; The chromatic decomposition; Change of rings; The Morava stabilizer group.

(

**7340**views)

**Topology of Stratified Spaces**

by

**Greg Friedman, et al.**-

**Cambridge University Press**

This book concerns the study of singular spaces using techniques of geometry and topology and interactions among them. The authors cover intersection homology, L2 cohomology and differential operators, the topology of algebraic varieties, etc.

(

**4405**views)

**Introduction to Algebraic Topology and Algebraic Geometry**

by

**U. Bruzzo**

Introduction to algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for algebraically integrable systems and the geometry of quantum field and string theory.

(

**5901**views)

**Differential Forms and Cohomology: Course**

by

**Peter Saveliev**-

**Intelligent Perception**

Differential forms provide a modern view of calculus. They also give you a start with algebraic topology in the sense that one can extract topological information about a manifold from its space of differential forms. It is called cohomology.

(

**2987**views)