Modern Algebraic Topology by D. G. Bourgin

Large book cover: Modern Algebraic Topology

Modern Algebraic Topology

Publisher: Macmillan
Number of pages: 544

Contents: Preliminary algebraic background; Chain relationships; Fundamentals of the absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; Gratings; Fundamental omology relations and applications; Homological algebra; Uniqueness proofs and fixed point indices; etc.

Home page url

Download or read it online for free here:
Read online
(online reading)

Similar books

Book cover: The Adams-Novikov Spectral Sequence and the Homotopy Groups of SpheresThe Adams-Novikov Spectral Sequence and the Homotopy Groups of Spheres
by - Northwestern University
Contents: The Adams spectral sequence; Classical calculations; The Adams-Novikov Spectral Sequence; Complex oriented homology theories; The height filtration; The chromatic decomposition; Change of rings; The Morava stabilizer group.
Book cover: Topology of Stratified SpacesTopology of Stratified Spaces
by - Cambridge University Press
This book concerns the study of singular spaces using techniques of geometry and topology and interactions among them. The authors cover intersection homology, L2 cohomology and differential operators, the topology of algebraic varieties, etc.
Book cover: Introduction to Algebraic Topology and Algebraic GeometryIntroduction to Algebraic Topology and Algebraic Geometry
Introduction to algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for algebraically integrable systems and the geometry of quantum field and string theory.
Book cover: Differential Forms and Cohomology: CourseDifferential Forms and Cohomology: Course
by - Intelligent Perception
Differential forms provide a modern view of calculus. They also give you a start with algebraic topology in the sense that one can extract topological information about a manifold from its space of differential forms. It is called cohomology.