**Manifold Theory**

by Peter Petersen

**Publisher**: UCLA 2010**Number of pages**: 77

**Description**:

These notes are a supplement to a first year graduate course in manifold theory. These are the topics covered: Manifolds (Smooth Manifolds, Projective Space, Matrix Spaces); Basic Tensor Analysis; Basic Cohomology Theory; Characteristic Classes.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**Geometry of 2D Topological Field Theories**

by

**Boris Dubrovin**-

**arXiv**

These lecture notes are devoted to the theory of equations of associativity describing geometry of moduli spaces of 2D topological field theories. Topics: WDVV equations and Frobenius manifolds; Polynomial solutions of WDVV; Symmetries of WDVV; etc.

(

**7352**views)

**H Ring Spectra and Their Applications**

by

**R. R. Bruner, J. P. May, J. E. McClure, M. Steinberger**-

**Springer**

This volume concerns spectra with enriched multiplicative structure. It is a truism that interesting cohomology theories are represented by ring spectra, the product on the spectrum giving rise to the cup products in the theory.

(

**5174**views)

**Introduction to Characteritic Classes and Index Theory**

by

**Jean-Pierre Schneiders**-

**Universidade de Lisboa**

This text deals with characteristic classes of real and complex vector bundles and Hirzebruch-Riemann-Roch formula. We will present a few basic but fundamental facts which should help the reader to gain a good idea of the mathematics involved.

(

**5248**views)

**A Topology Primer**

by

**Klaus Wirthmüller**-

**Technische Universität Kaiserslautern**

The purpose of this text is to make familiar with the basics of topology, to give a concise introduction to homotopy, and to make students familiar with homology. Readers are expected to have knowledge of analysis and linear algebra.

(

**7549**views)