Basic Real Analysis
by Anthony W. Knapp
Publisher: Birkhäuser 2016
ISBN/ASIN: 0817632506
Number of pages: 840
Description:
A comprehensive treatment with a global view of the subject, emphasizing the connections between real analysis and other branches of mathematics. Included throughout are many examples and hundreds of problems, and a separate 55-page section gives hints or complete solutions for most.
Download or read it online for free here:
Download link
(9.9MB, PDF)
Similar books

by Martin Smith-Martinez, et al. - Wikibooks
This introductory book is concerned in particular with analysis in the context of the real numbers. It will first develop the basic concepts needed for the idea of functions, then move on to the more analysis-based topics.
(14503 views)

by W W L Chen - Macquarie University
An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, etc.
(17489 views)

by John K. Hunter - University of California Davis
These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.
(9182 views)

by L. C. Young - Cambridge University Press
On the one hand, practically no knowledge is assumed; on the other hand, the ideas of Cauchy, Riemann, Darboux, Weierstrass, familiar to the reader who is acquainted with the elementary theory, are used as much as possible ...
(6483 views)