Logo

Mathematical Analysis I by Elias Zakon

Small book cover: Mathematical Analysis I

Mathematical Analysis I
by

Publisher: The Trillia Group
ISBN/ASIN: 193170502X
Number of pages: 367

Description:
This book carefully leads the student through the basic topics of real analysis. Topics include metric spaces, open and closed sets, convergent sequences, function limits and continuity, compact sets, sequences and series of functions, power series, differentiation and integration, Taylor's theorem, total variation, rectifiable arcs, and sufficient conditions of integrability. Well over 500 exercises assist students through the material.

Home page url

Download or read it online for free here:
Download link
(2.5MB, PDF)

Similar books

Book cover: Introduction to Infinitesimal Analysis: Functions of One Real VariableIntroduction to Infinitesimal Analysis: Functions of One Real Variable
by - John Wiley & Sons
This volume is designed as a reference book for a course dealing with the fundamental theorems of infinitesimal calculus in a rigorous manner. The book may also be used as a basis for a rather short theoretical course on real functions.
(8843 views)
Book cover: Real AnalysisReal Analysis
by - Prentice Hall
This book provides an introductory chapter containing background material as well as a mini-overview of much of the course, making the book accessible to readers with varied backgrounds. It uses a wealth of examples to illustrate important concepts.
(13812 views)
Book cover: Interactive Real AnalysisInteractive Real Analysis
by - Seton Hall University
Interactive Real Analysis is an online, interactive textbook for Real Analysis or Advanced Calculus in one real variable. It deals with sets, sequences, series, continuity, differentiability, integrability, topology, power series, and more.
(11837 views)
Book cover: The Foundations of AnalysisThe Foundations of Analysis
by - arXiv
This is a detailed introduction to the real number system from a categorical perspective. We begin with the categorical definition of the natural numbers, review the Eudoxus theory of ratios, and then define the positive real numbers categorically.
(4262 views)