Logo

Mathematical Analysis I by Elias Zakon

Small book cover: Mathematical Analysis I

Mathematical Analysis I
by

Publisher: The Trillia Group
ISBN/ASIN: 193170502X
Number of pages: 367

Description:
This book carefully leads the student through the basic topics of real analysis. Topics include metric spaces, open and closed sets, convergent sequences, function limits and continuity, compact sets, sequences and series of functions, power series, differentiation and integration, Taylor's theorem, total variation, rectifiable arcs, and sufficient conditions of integrability. Well over 500 exercises assist students through the material.

Home page url

Download or read it online for free here:
Download link
(2.5MB, PDF)

Similar books

Book cover: Introduction to Real AnalysisIntroduction to Real Analysis
by - Prentice Hall
This book introduces readers to a rigorous understanding of mathematical analysis and presents challenging concepts as clearly as possible. Written for those who want to gain an understanding of mathematical analysis and challenging concepts.
(17538 views)
Book cover: An Introduction to Real AnalysisAn Introduction to Real Analysis
by - University of California Davis
These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.
(737 views)
Book cover: Homeomorphisms in AnalysisHomeomorphisms in Analysis
by - American Mathematical Society
This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.
(9119 views)
Book cover: The Foundations of AnalysisThe Foundations of Analysis
by - arXiv
This is a detailed introduction to the real number system from a categorical perspective. We begin with the categorical definition of the natural numbers, review the Eudoxus theory of ratios, and then define the positive real numbers categorically.
(3017 views)