**The Theory Of Integration**

by L. C. Young

**Publisher**: Cambridge University Press 1927**Number of pages**: 69

**Description**:

In writing this book, I have tried above all to simplify the work of the student. On the one hand, practically no knowledge is assumed (merely what concerns existence of real numbers ,and their symbolism); on the other hand, the ideas of Cauchy, Riemann, Darboux, Weierstrass, familiar to the reader who is acquainted with the elementary theory, are used as much as possible.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Introduction to Lebesgue Integration**

by

**W W L Chen**-

**Macquarie University**

An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, etc.

(

**11445**views)

**Applied Analysis**

by

**J. Hunter, B. Nachtergaele**-

**World Scientific Publishing Company**

Introduces applied analysis at the graduate level, particularly those parts of analysis useful in graduate applications. Only a background in basic calculus, linear algebra and ordinary differential equations, and functions and sets is required.

(

**10441**views)

**Notes on Measure and Integration**

by

**John Franks**-

**arXiv**

My intent is to introduce the Lebesgue integral in a quick, and hopefully painless, way and then go on to investigate the standard convergence theorems and a brief introduction to the Hilbert space of L2 functions on the interval.

(

**3966**views)

**A Course of Pure Mathematics**

by

**G.H. Hardy**-

**Cambridge University Press**

This classic book has inspired successive generations of budding mathematicians at the beginning of their undergraduate courses. Hardy explains the fundamental ideas of the differential and integral calculus, and the properties of infinite series.

(

**7017**views)