Logo

Dynamical and Hamiltonian Formulation of General Relativity

Small book cover: Dynamical and Hamiltonian Formulation of General Relativity

Dynamical and Hamiltonian Formulation of General Relativity
by

Publisher: arXiv.org
Number of pages: 76

Description:
This contribution introduces the reader to the reformulation of Einstein's field equations of General Relativity as a constrained evolutionary system of Hamiltonian type and discusses some of its uses, together with some technical and conceptual aspects. Attempts were made to keep the presentation self contained and accessible to first-year graduate students.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Spacetime Geometry and General RelativitySpacetime Geometry and General Relativity
by - King's College London
This course is meant as introduction to what is widely considered to be the most beautiful and imaginative physical theory ever devised: General Relativity. It is assumed that you have a reasonable knowledge of Special Relativity as well as tensors.
(9769 views)
Book cover: Gravitational WavesGravitational Waves
by - arXiv
Gravitational-wave (GW) science has entered a new era. Theoretically, the last years have been characterized by numerous major advances. These lectures are envisioned to be an introductory, basic course in gravitational-wave physics.
(11755 views)
Book cover: Gravitational Waves and Black Holes: an Introduction to General RelativityGravitational Waves and Black Holes: an Introduction to General Relativity
by - arXiv
General relativity is outlined as the classical field theory of gravity, emphasizing physical phenomena rather than mathematical formalism. Dynamical solutions representing traveling waves and stationary fields of black holes are discussed.
(12772 views)
Book cover: Introduction to Differential Geometry and General RelativityIntroduction to Differential Geometry and General Relativity
by
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(23234 views)