Logo

Dynamical and Hamiltonian Formulation of General Relativity

Small book cover: Dynamical and Hamiltonian Formulation of General Relativity

Dynamical and Hamiltonian Formulation of General Relativity
by

Publisher: arXiv.org
Number of pages: 76

Description:
This contribution introduces the reader to the reformulation of Einstein's field equations of General Relativity as a constrained evolutionary system of Hamiltonian type and discusses some of its uses, together with some technical and conceptual aspects. Attempts were made to keep the presentation self contained and accessible to first-year graduate students.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: A No-Nonsense Introduction to General RelativityA No-Nonsense Introduction to General Relativity
by
General relativity has a reputation of being extremely difficult. This introduction is a very pragmatic affair, intended to give you some immediate feel for the language of GR. It does not substitute for a deep understanding -- that takes more work.
(2956 views)
Book cover: General Covariance and the Foundations of General RelativityGeneral Covariance and the Foundations of General Relativity
by - University of Pittsburgh
This text reviews the development of Einstein's thought on general covariance (the fundamental physical principle of GTR), its relation to the foundations of general relativity and the evolution of the continuing debate over his viewpoint.
(5253 views)
Book cover: Advanced General RelativityAdvanced General Relativity
by - Google Sites
Topics include: Asymptotic structure of spacetime, conformal diagrams, null surfaces, Raychaudhury equation, black holes, the holographic principle, singularity theorems, Einstein-Hilbert action, energy-momentum tensor, Noether's theorem, etc.
(6211 views)
Book cover: Space - Time - MatterSpace - Time - Matter
by - Methuen & Co.
A classic of physics -- the first systematic presentation of Einstein's theory of relativity. Long one of the standard texts in the field, this excellent introduction probes deeply into Einstein's general relativity, gravitational waves and energy.
(3401 views)