**Analytic Combinatorics**

by Philippe Flajolet, Robert Sedgewick

**Publisher**: Cambridge University Press 2008**ISBN/ASIN**: 0521898064**ISBN-13**: 9780521898065**Number of pages**: 822

**Description**:

Analytic Combinatorics is a self-contained treatment of the mathematics underlying the analysis of discrete structures, which has emerged over the past several decades as an essential tool in the understanding of properties of computer programs and scientific models with applications in physics, biology and chemistry. Thorough treatment of a large number of classical applications is an essential aspect of the presentation. Written by the leaders in the field of analytic combinatorics, this text is certain to become the definitive reference on the topic. The text is complemented with exercises, examples, appendices and notes to aid understanding therefore, it can be used as the basis for an advanced undergraduate or a graduate course on the subject, or for self-study.

Download or read it online for free here:

**Download link**

(9.8MB, PDF)

## Similar books

**Combinatorial Geometry with Application to Field Theory**

by

**Linfan Mao**-

**InfoQuest**

Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.

(

**11269**views)

**Topics in Algebraic Combinatorics**

by

**Richard P. Stanley**-

**MIT**

Contents: Walks in graphs; Cubes and the Radon transform; Random walks; The Sperner property; Group actions on boolean algebras; Young diagrams and q-binomial coefficients; Enumeration under group action; A glimpse of Young tableaux; etc.

(

**6129**views)

**Combinatorics Through Guided Discovery**

by

**Kenneth P. Bogart**-

**Dartmouth College**

This is an introduction to combinatorial mathematics, also known as combinatorics. The book focuses especially but not exclusively on the part of combinatorics that mathematicians refer to as 'counting'. The book consists almost entirely of problems.

(

**6147**views)

**Matroid Decomposition**

by

**Klaus Truemper**-

**Leibniz**

Matroids were introduced in 1935 as an abstract generalization of graphs and matrices. Matroid decomposition covers the area of the theory dealing with decomposition and composition of matroids. The exposition is clear and simple.

(

**6317**views)