**Matroid Decomposition**

by Klaus Truemper

**Publisher**: Leibniz 1998**ISBN/ASIN**: 0966355407**ISBN-13**: 9780966355406**Number of pages**: 398

**Description**:

Matroids were introduced in 1935 as an abstract generalization of graphs and matrices. Matroid decomposition covers the area of the theory dealing with decomposition and composition of matroids. The exposition is clear and simple, making the main results easily understandable.

Download or read it online for free here:

**Download link**

(multiple PS files)

## Similar books

**Enumerative Combinatorics: Volume 1**

by

**Richard P. Stanley**-

**MIT**

The standard guide to the topic for students and experts alike. The material in Volume 1 was chosen to cover those parts of enumerative combinatorics of greatest applicability and with the most important connections with other areas of mathematics.

(

**2787**views)

**Combinatorial Geometry with Application to Field Theory**

by

**Linfan Mao**-

**InfoQuest**

Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.

(

**10671**views)

**New Perspectives in Algebraic Combinatorics**

by

**Louis J. Billera, at al.**-

**Cambridge University Press**

The rich combinatorial problems arising from the study of various algebraic structures are the subject of the book. It will present the state of the art to graduate students and researchers in combinatorics as well as algebra, geometry, and topology.

(

**7719**views)

**Topics in Algebraic Combinatorics**

by

**Richard P. Stanley**-

**MIT**

Contents: Walks in graphs; Cubes and the Radon transform; Random walks; The Sperner property; Group actions on boolean algebras; Young diagrams and q-binomial coefficients; Enumeration under group action; A glimpse of Young tableaux; etc.

(

**5665**views)