**Introduction to Infinitesimal Analysis: Functions of One Real Variable**

by N. J. Lennes

**Publisher**: John Wiley & Sons 1907**ISBN/ASIN**: B001QAQX0Y**Number of pages**: 225

**Description**:

This little volume is designed as a convenient reference book for a course dealing with the fundamental theorems of infinitesimal calculus in a rigorous manner. The book may also be used as a basis for a rather short theoretical course on real functions, such as is now given from time to time in some of our universities.

Download or read it online for free here:

**Download link**

(1.3MB, PDF)

## Similar books

**Homeomorphisms in Analysis**

by

**Casper Goffman, at al.**-

**American Mathematical Society**

This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.

(

**15752**views)

**Elliptic Functions**

by

**Arthur Latham Baker**-

**John Wiley & Sons**

The author used only such methods as are familiar to the ordinary student of Calculus, avoiding those methods of discussion dependent upon the properties of double periodicity, and also those depending upon Functions of Complex Variables.

(

**13003**views)

**An Introduction to Real Analysis**

by

**John K. Hunter**-

**University of California Davis**

These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.

(

**8293**views)

**Notes on Measure and Integration**

by

**John Franks**-

**arXiv**

My intent is to introduce the Lebesgue integral in a quick, and hopefully painless, way and then go on to investigate the standard convergence theorems and a brief introduction to the Hilbert space of L2 functions on the interval.

(

**7822**views)