Logo

Transformations of Surfaces

Small book cover: Transformations of Surfaces

Transformations of Surfaces
by

Publisher: Princeton University Press
Number of pages: 371

Description:
Most, if not all, of the transformations which have been developed in recent years are reducible to transformations F or to transformations of the type such that a surface and a transform are focal surfaces of a W congruence. It is the purpose of this book to develop these two types of transformations and thereby to coordinate the results of many investigations.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: Introduction to Evolution Equations in GeometryIntroduction to Evolution Equations in Geometry
by - arXiv
The author aimed at providing a first introduction to the main general ideas on the study of the Ricci flow, as well as guiding the reader through the steps of Kaehler geometry for the understanding of the complex version of the Ricci flow.
(10232 views)
Book cover: Advances in Discrete Differential GeometryAdvances in Discrete Differential Geometry
by - Springer
This is the book on a newly emerging field of discrete differential geometry. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics.
(8364 views)
Book cover: Ricci-Hamilton Flow on SurfacesRicci-Hamilton Flow on Surfaces
by - Tsinghua University
Contents: Ricci-Hamilton flow on surfaces; Bartz-Struwe-Ye estimate; Hamilton's another proof on S2; Perelman's W-functional and its applications; Ricci-Hamilton flow on Riemannian manifolds; Maximum principles; Curve shortening flow on manifolds.
(9551 views)
Book cover: Projective and Polar SpacesProjective and Polar Spaces
by - Queen Mary College
The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The treatment of these themes blends the descriptive with the axiomatic.
(12404 views)