Logo

An Introduction to Gaussian Geometry

Small book cover: An Introduction to Gaussian Geometry

An Introduction to Gaussian Geometry
by

Publisher: Lund University
Number of pages: 75

Description:
The purpose of these notes is to introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra, real analysis of several variables, and basic knowledge of the classical theory of ordinary differential equations and some topology.

Home page url

Download or read it online for free here:
Download link
(370KB, PDF)

Similar books

Book cover: Synthetic Geometry of ManifoldsSynthetic Geometry of Manifolds
by - University of Aarhus
This textbook can be used as a non-technical and geometric gateway to many aspects of differential geometry. The audience of the book is anybody with a reasonable mathematical maturity, who wants to learn some differential geometry.
(7032 views)
Book cover: Probability, Geometry and Integrable SystemsProbability, Geometry and Integrable Systems
by - Cambridge University Press
The three main themes of this book are probability theory, differential geometry, and the theory of integrable systems. The papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems.
(11241 views)
Book cover: Noncompact Harmonic ManifoldsNoncompact Harmonic Manifolds
by - arXiv
We provide a survey on recent results on noncompact simply connected harmonic manifolds, and we also prove many new results, both for general noncompact harmonic manifolds and for noncompact harmonic manifolds with purely exponential volume growth.
(4155 views)
Book cover: Triangles, Rotation, a Theorem and the JackpotTriangles, Rotation, a Theorem and the Jackpot
by - arXiv
This paper introduced undergraduates to the Atiyah-Singer index theorem. It includes a statement of the theorem, an outline of the easy part of the heat equation proof. It includes counting lattice points and knot concordance as applications.
(5615 views)