Logo

An Introduction to Gaussian Geometry

Small book cover: An Introduction to Gaussian Geometry

An Introduction to Gaussian Geometry
by

Publisher: Lund University
Number of pages: 75

Description:
The purpose of these notes is to introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra, real analysis of several variables, and basic knowledge of the classical theory of ordinary differential equations and some topology.

Home page url

Download or read it online for free here:
Download link
(370KB, PDF)

Similar books

Book cover: Notes on the Atiyah-Singer Index TheoremNotes on the Atiyah-Singer Index Theorem
by - University of Notre Dame
This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.
(10672 views)
Book cover: Manifolds: Current Research AreasManifolds: Current Research Areas
by - InTech
Differential geometry is a very active field of research and has many applications to areas such as physics and gravity, for example. The papers in this book cover a number of subjects which will be of interest to workers in these areas.
(6254 views)
Book cover: Synthetic Differential GeometrySynthetic Differential Geometry
by - Cambridge University Press
Synthetic differential geometry is a method of reasoning in differential geometry and calculus. This book is the second edition of Anders Kock's classical text, many notes have been included commenting on new developments.
(13515 views)
Book cover: Introduction to Evolution Equations in GeometryIntroduction to Evolution Equations in Geometry
by - arXiv
The author aimed at providing a first introduction to the main general ideas on the study of the Ricci flow, as well as guiding the reader through the steps of Kaehler geometry for the understanding of the complex version of the Ricci flow.
(10218 views)