Exterior Differential Systems and Euler-Lagrange Partial Differential Equations
by R. Bryant, P. Griffiths, D. Grossman
Publisher: University Of Chicago Press 2008
ISBN/ASIN: 0226077942
ISBN-13: 9780226077949
Number of pages: 219
Description:
The authors present the results of their ongoing development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincaré-Cartan forms. They also cover certain aspects of the theory of exterior differential systems, which provides the language and techniques for the entire study.
Download or read it online for free here:
Download link
(1.6MB, PDF)
Similar books

by Kentaro Yano - North Holland Publishing Co.
The topics include: Spaces with a non-vanishing curvature tensor that admit a group of automorphisms of the maximum order; Groups of transformations in generalized spaces; Global properties of the groups of motions in a compact Riemannian space...
(2747 views)

by Sigmundur Gudmundsson - Lund University
These notes introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra and real analysis.
(10980 views)

by Linfan Mao - InfoQuest
Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.
(14780 views)

by Peter W. Michor - Universitaet Wien
Gauge theory usually investigates the space of principal connections on a principal fiber bundle (P,p,M,G) and its orbit space under the action of the gauge group (called the moduli space), which is the group of all principal bundle automorphisms...
(8642 views)