Logo

Exterior Differential Systems and Euler-Lagrange Partial Differential Equations

Large book cover: Exterior Differential Systems and Euler-Lagrange Partial Differential Equations

Exterior Differential Systems and Euler-Lagrange Partial Differential Equations
by

Publisher: University Of Chicago Press
ISBN/ASIN: 0226077942
ISBN-13: 9780226077949
Number of pages: 219

Description:
The authors present the results of their ongoing development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincaré-Cartan forms. They also cover certain aspects of the theory of exterior differential systems, which provides the language and techniques for the entire study.

Home page url

Download or read it online for free here:
Download link
(1.6MB, PDF)

Similar books

Book cover: Natural Operations in Differential GeometryNatural Operations in Differential Geometry
by - Springer
A comprehensive textbook on all basic structures from the theory of jets. It begins with an introduction to differential geometry. After reduction each problem to a finite order setting, the remaining discussion is based on properties of jet spaces.
(11264 views)
Book cover: Introduction to Evolution Equations in GeometryIntroduction to Evolution Equations in Geometry
by - arXiv
The author aimed at providing a first introduction to the main general ideas on the study of the Ricci flow, as well as guiding the reader through the steps of Kaehler geometry for the understanding of the complex version of the Ricci flow.
(5034 views)
Book cover: Ricci Flow and the Poincare ConjectureRicci Flow and the Poincare Conjecture
by - American Mathematical Society
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.
(7675 views)
Book cover: Notes on the Atiyah-Singer Index TheoremNotes on the Atiyah-Singer Index Theorem
by - University of Notre Dame
This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.
(5573 views)