**Basic Concepts of Enriched Category Theory**

by Max Kelly

**Publisher**: Cambridge University Press 2005**ISBN/ASIN**: 0521287022**ISBN-13**: 9780521287029**Number of pages**: 143

**Description**:

Although numerous contributions from divers authors have brought enriched category theory to a developed state, there is still no connected account of the theory, or even of a substantial part of it. The present book is designed to supply the want in part, by giving a fairly complete treatment of the limited area to which the title refers. The basic concepts of category theory certainly include the notion of functor-category, of limit and colimit, of Kan extension, and of density; with their applications to completions, perhaps including those relative completions given by categories of algebras for limit-defined theories.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Category Theory for Scientists**

by

**David I. Spivak**-

**arXiv**

We attempt to show that category theory can be applied throughout the sciences as a framework for modeling phenomena and communicating results. In order to target the scientific audience, this book is example-based rather than proof-based.

(

**5362**views)

**Categories and Homological Algebra**

by

**Pierre Schapira**-

**UPMC**

These notes introduce the language of categories and present the basic notions of homological algebra, first from an elementary point of view, next with a more sophisticated approach, with the introduction of triangulated and derived categories.

(

**5564**views)

**Notes on Categories and Groupoids**

by

**P. J. Higgins**-

**Van Nostrand Reinhold**

A self-contained account of the elementary theory of groupoids and some of its uses in group theory and topology. Category theory appears as a secondary topic whenever it is relevant to the main issue, and its treatment is by no means systematic.

(

**9948**views)

**Basic Category Theory**

by

**Jaap van Oosten**-

**University of Utrecht**

Contents: Categories and Functors; Natural transformations; (Co)cones and (Co)limits; A little piece of categorical logic; Adjunctions; Monads and Algebras; Cartesian closed categories and the lambda-calculus; Recursive Domain Equations.

(

**7508**views)