Category Theory for Computing Science
by Michael Barr, Charles Wells
Publisher: Prentice Hall 1998
ISBN/ASIN: 0131204866
ISBN-13: 9780131204867
Number of pages: 544
Description:
This book is a textbook in basic category theory, written specifically to be read by researchers and students in computing science. We expound the constructions we feel are basic to category theory in the context of examples and applications to computing science.
Download or read it online for free here:
Download link
(2.1MB, PDF)
Similar books
Mixed Motives
by Marc Levine - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(15565 views)
by Marc Levine - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(15565 views)
Dynamical Systems and Sheaves
by D. I. Spivak, C. Vasilakopoulou, P. Schultz - arXiv
A categorical framework for modeling and analyzing systems in a broad sense is proposed. These systems should be thought of as 'machines' with inputs and outputs, carrying some sort of signal that occurs through some notion of time.
(7485 views)
by D. I. Spivak, C. Vasilakopoulou, P. Schultz - arXiv
A categorical framework for modeling and analyzing systems in a broad sense is proposed. These systems should be thought of as 'machines' with inputs and outputs, carrying some sort of signal that occurs through some notion of time.
(7485 views)
Functors and Categories of Banach Spaces
by Peter W. Michor - Springer
The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.
(11368 views)
by Peter W. Michor - Springer
The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.
(11368 views)
Category Theory for Scientists
by David I. Spivak - arXiv
We attempt to show that category theory can be applied throughout the sciences as a framework for modeling phenomena and communicating results. In order to target the scientific audience, this book is example-based rather than proof-based.
(10712 views)
by David I. Spivak - arXiv
We attempt to show that category theory can be applied throughout the sciences as a framework for modeling phenomena and communicating results. In order to target the scientific audience, this book is example-based rather than proof-based.
(10712 views)