**Complex Analysis**

by George Cain

2001

**Description**:

This textbook is written for an introductory undergraduate course in complex analysis. From the table of contents: Complex Numbers; Complex Functions; Elementary Functions; Integration; Cauchy's Theorem; Harmonic Functions; Series; Taylor and Laurent Series; Poles and Residues; Argument Principle.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Complex Integration and Cauchy's Theorem**

by

**G. N. Watson**-

**Cambridge University Press**

This brief monograph offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications ...

(

**5128**views)

**Methods for Finding Zeros in Polynomials**

by

**Leif Mejlbro**-

**BookBoon**

Polynomials are the first class of functions that the student meets. Therefore, one may think that they are easy to handle. They are not in general! Topics as e.g. finding roots in a polynomial and the winding number are illustrated.

(

**5907**views)

**Lectures on the Theory of Algebraic Functions of One Variable**

by

**M. Deuring**-

**Tata Institute of Fundamental Research**

We shall be dealing in these lectures with the algebraic aspects of the theory of algebraic functions of one variable. Since an algebraic function w(z) is defined by f(z,w)=0, the study of such functions should be possible by algebraic methods.

(

**5595**views)

**Complex Analysis**

by

**Christian Berg**-

**Kobenhavns Universitet**

Contents: Holomorphic functions; Contour integrals and primitives; The theorems of Cauchy; Applications of Cauchy's integral formula; Zeros and isolated singularities; The calculus of residues; The maximum modulus principle; Moebius transformations.

(

**2302**views)