**Cusps of Gauss Mappings**

by Thomas Banchoff, Terence Gaffney, Clint McCrory

**Publisher**: Pitman Advanced Pub. Program 1982**ISBN/ASIN**: 0273085360**ISBN-13**: 9780273085362**Number of pages**: 88

**Description**:

From the table of contents: Gauss mappings of plane curves, Gauss mappings of surfaces, characterizations of Gaussian cusps, singularities of families of mappings, projections to lines, focal and parallel surfaces, projections to planes, singularities and extrinsic geometry.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**Synthetic Geometry of Manifolds**

by

**Anders Kock**-

**University of Aarhus**

This textbook can be used as a non-technical and geometric gateway to many aspects of differential geometry. The audience of the book is anybody with a reasonable mathematical maturity, who wants to learn some differential geometry.

(

**6928**views)

**Ricci-Hamilton Flow on Surfaces**

by

**Li Ma**-

**Tsinghua University**

Contents: Ricci-Hamilton flow on surfaces; Bartz-Struwe-Ye estimate; Hamilton's another proof on S2; Perelman's W-functional and its applications; Ricci-Hamilton flow on Riemannian manifolds; Maximum principles; Curve shortening flow on manifolds.

(

**6006**views)

**Geometric Wave Equations**

by

**Stefan Waldmann**-

**arXiv**

We discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed.

(

**6140**views)

**Projective and Polar Spaces**

by

**Peter J. Cameron**-

**Queen Mary College**

The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The treatment of these themes blends the descriptive with the axiomatic.

(

**8261**views)