Logo

Elementary Real Analysis by B. S. Thomson, J. B. Bruckner, A. M. Bruckner

Large book cover: Elementary Real Analysis

Elementary Real Analysis
by

Publisher: Prentice Hall
ISBN/ASIN: 0130190756
ISBN-13: 9780130190758
Number of pages: 735

Description:
Elementary Real Analysis is written in a rigorous, yet reader friendly style with motivational and historical material that emphasizes the "big picture" and makes proofs seem natural rather than mysterious. Introduces key concepts such as point set theory, uniform continuity of functions and uniform convergence of sequences of functions. Covers metric spaces. Ideal for readers interested in mathematics, particularly in advanced calculus and real analysis.

Home page url

Download or read it online for free here:
Read online
(online reading)

Similar books

Book cover: How We Got From There to Here: A Story of Real AnalysisHow We Got From There to Here: A Story of Real Analysis
by - Open SUNY Textbooks
This book covers the major topics typically addressed in an introductory undergraduate course in real analysis in their historical order. The book provides guidance for transforming an intuitive understanding into rigorous mathematical arguments.
(2934 views)
Book cover: Elliptic FunctionsElliptic Functions
by - John Wiley & Sons
The author used only such methods as are familiar to the ordinary student of Calculus, avoiding those methods of discussion dependent upon the properties of double periodicity, and also those depending upon Functions of Complex Variables.
(7713 views)
Book cover: Lectures on Lipschitz AnalysisLectures on Lipschitz Analysis
by
In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. From the table of contents: Introduction; Extension; Differentiability; Sobolev spaces; Whitney flat forms; Locally standard Lipschitz structures.
(6810 views)
Book cover: Orders of InfinityOrders of Infinity
by - Cambridge University Press
The ideas of Du Bois-Reymond's 'Infinitarcalcul' are of great and growing importance in all branches of the theory of functions. The author brings the Infinitarcalcul up to date, stating explicitly and proving carefully a number of general theorems.
(6233 views)