Logo

Elementary Real Analysis by B. S. Thomson, J. B. Bruckner, A. M. Bruckner

Large book cover: Elementary Real Analysis

Elementary Real Analysis
by

Publisher: Prentice Hall
ISBN/ASIN: 0130190756
ISBN-13: 9780130190758
Number of pages: 735

Description:
Elementary Real Analysis is written in a rigorous, yet reader friendly style with motivational and historical material that emphasizes the "big picture" and makes proofs seem natural rather than mysterious. Introduces key concepts such as point set theory, uniform continuity of functions and uniform convergence of sequences of functions. Covers metric spaces. Ideal for readers interested in mathematics, particularly in advanced calculus and real analysis.

Home page url

Download or read it online for free here:
Read online
(online reading)

Similar books

Book cover: Real AnalysisReal Analysis
by - Wikibooks
This introductory book is concerned in particular with analysis in the context of the real numbers. It will first develop the basic concepts needed for the idea of functions, then move on to the more analysis-based topics.
(6832 views)
Book cover: Theory of Functions of a Real VariableTheory of Functions of a Real Variable
by
The topology of metric spaces, Hilbert spaces and compact operators, the Fourier transform, measure theory, the Lebesgue integral, the Daniell integral, Wiener measure, Brownian motion and white noise, Haar measure, Banach algebras, etc.
(28809 views)
Book cover: Differential CalculusDifferential Calculus
by - Université Paris VI
The notes provide a short presentation of the main concepts of differential calculus. Our point of view is the abstract setting of a real normed space, and when necessary to specialize to the case of a finite dimensional space endowed with a basis.
(3931 views)
Book cover: A Course of Pure MathematicsA Course of Pure Mathematics
by - Cambridge University Press
This classic book has inspired successive generations of budding mathematicians at the beginning of their undergraduate courses. Hardy explains the fundamental ideas of the differential and integral calculus, and the properties of infinite series.
(5364 views)