**Elementary Real Analysis**

by B. S. Thomson, J. B. Bruckner, A. M. Bruckner

**Publisher**: Prentice Hall 2001**ISBN/ASIN**: 0130190756**ISBN-13**: 9780130190758**Number of pages**: 735

**Description**:

Elementary Real Analysis is written in a rigorous, yet reader friendly style with motivational and historical material that emphasizes the "big picture" and makes proofs seem natural rather than mysterious. Introduces key concepts such as point set theory, uniform continuity of functions and uniform convergence of sequences of functions. Covers metric spaces. Ideal for readers interested in mathematics, particularly in advanced calculus and real analysis.

Download or read it online for free here:

**Read online**

(online reading)

## Similar books

**The General Theory of Dirichlet's Series**

by

**G.H. Hardy, Marcel Riesz**-

**Cambridge University Press**

This classic work explains the theory and formulas behind Dirichlet's series and offers the first systematic account of Riesz's theory of the summation of series by typical means. Its authors rank among the most distinguished mathematicians ...

(

**2327**views)

**An Introductory Course Of Mathematical Analysis**

by

**Charles Walmsley**-

**Cambridge University Press**

Originally published in 1926, this text was aimed at first-year undergraduates studying physics and chemistry, to help them become acquainted with the concepts and processes of differentiation and integration. A prominence is given to inequalities.

(

**2886**views)

**Lectures on Lipschitz Analysis**

by

**Juha Heinonen**

In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. From the table of contents: Introduction; Extension; Differentiability; Sobolev spaces; Whitney flat forms; Locally standard Lipschitz structures.

(

**7340**views)

**Introduction to Real Analysis**

by

**Lee Larson**-

**University of Louisville**

From the table of contents: Basic Ideas (Sets, Functions and Relations, Cardinality); The Real Numbers; Sequences; Series; The Topology of R; Limits of Functions; Differentiation; Integration; Sequences of Functions; Fourier Series.

(

**4094**views)