**Generic Polynomials: Constructive Aspects of the Inverse Galois Problem**

by C. U. Jensen, A. Ledet, N. Yui

**Publisher**: Cambridge University Press 2002**ISBN/ASIN**: 0521819989**ISBN-13**: 9780521819985**Number of pages**: 268

**Description**:

This book describes a constructive approach to the Inverse Galois problem. The main theme is an exposition of a family of "generic" polynomials for certain finite groups, which give all Galois extensions having the required group as their Galois group. The existence of such generic polynomials is discussed, and where they do exist, a detailed treatment of their construction is given. The book also introduces the notion of "generic dimension" to address the problem of the smallest number of parameters required by a generic polynomial.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Lectures On Galois Cohomology of Classical Groups**

by

**M. Kneser**-

**Tata Institute of Fundamental Research**

The main result is the Hasse principle for the one-dimensional Galois cohomology of simply connected classical groups over number fields. For most groups, this result is closely related to other types of Hasse principle.

(

**5089**views)

**Galois Theory**

by

**Miles Reid**-

**University of Warwick**

The author discusses the problem of solutions of polynomial equations both in explicit terms and in terms of abstract algebraic structures. The course demonstrates the tools of abstract algebra as applied to a meaningful problem.

(

**10571**views)

**Algebraic Equations**

by

**George Ballard Mathews**-

**Cambridge University Press**

This book is intended to give an account of the theory of equations according to the ideas of Galois. This method analyzes, so far as exact algebraical processes permit, the set of roots possessed by any given numerical equation.

(

**5476**views)

**Fields and Galois Theory**

by

**J. S. Milne**

A concise treatment of Galois theory and the theory of fields, including transcendence degrees and infinite Galois extensions. Contents: Basic definitions and results; Splitting fields; The fundamental theorem of Galois theory; etc.

(

**7027**views)