Logo

Generic Polynomials: Constructive Aspects of the Inverse Galois Problem

Large book cover: Generic Polynomials: Constructive Aspects of the Inverse Galois Problem

Generic Polynomials: Constructive Aspects of the Inverse Galois Problem
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521819989
ISBN-13: 9780521819985
Number of pages: 268

Description:
This book describes a constructive approach to the Inverse Galois problem. The main theme is an exposition of a family of "generic" polynomials for certain finite groups, which give all Galois extensions having the required group as their Galois group. The existence of such generic polynomials is discussed, and where they do exist, a detailed treatment of their construction is given. The book also introduces the notion of "generic dimension" to address the problem of the smallest number of parameters required by a generic polynomial.

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: Galois Theory: Lectures Delivered at the University of Notre DameGalois Theory: Lectures Delivered at the University of Notre Dame
by - University of Notre Dame
The book deals with linear algebra, including fields, vector spaces, homogeneous linear equations, and determinants, extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, and more.
(882 views)
Book cover: Lectures on Field Theory and Ramification TheoryLectures on Field Theory and Ramification Theory
by - Indian Institute of Technology, Bombay
These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.
(5172 views)
Book cover: Galois TheoryGalois Theory
by - Macquarie University
This text follows the usual path through to Galois groups, but just for subfields of the complex numbers. It takes as its goal the insolubility of polynomials by radicals. There is a chapter that gives a proof of the Fundamental Theorem of Algebra.
(8869 views)
Book cover: Notes on Galois TheoryNotes on Galois Theory
by - Boston College
From the table of contents: Basic ring theory, polynomial rings; Finite fields; Extensions of rings and fields; Computing Galois groups of polynomials; Galois groups and prime ideals; Cyclotomic extensions and abelian numbers.
(3632 views)