**Lectures On Galois Cohomology of Classical Groups**

by M. Kneser

**Publisher**: Tata Institute of Fundamental Research 1969**Number of pages**: 212

**Description**:

The main result is the Hasse principle for the one-dimensional Galois cohomology of simply connected classical groups over number fields. For most groups, this result is closely related to other types of Hasse principle. Some of these are well known, in particular those for quadratic forms.

Download or read it online for free here:

**Download link**

(690KB, PDF)

## Similar books

**Class Field Theory**

by

**J. S. Milne**

Class field theory describes the abelian extensions of a local or global field in terms of the arithmetic of the field itself. These notes contain an exposition of abelian class field theory using the algebraic/cohomological approach.

(

**10361**views)

**Lectures on Field Theory and Ramification Theory**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology, Bombay**

These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.

(

**9518**views)

**Algebraic Equations**

by

**George Ballard Mathews**-

**Cambridge University Press**

This book is intended to give an account of the theory of equations according to the ideas of Galois. This method analyzes, so far as exact algebraical processes permit, the set of roots possessed by any given numerical equation.

(

**9587**views)

**Lectures on the Algebraic Theory of Fields**

by

**K.G. Ramanathan**-

**Tata Institute of Fundamental Research**

These lecture notes on Field theory are aimed at providing the beginner with an introduction to algebraic extensions, algebraic function fields, formally real fields and valuated fields. We assume a familiarity with group theory and vector spaces.

(

**10053**views)