Logo

Notes on Galois Theory by Mark Reeder

Small book cover: Notes on Galois Theory

Notes on Galois Theory
by

Publisher: Boston College
Number of pages: 66

Description:
From the table of contents: Basic ring theory, polynomial rings; Finite fields; Extensions of rings and fields; Computing Galois groups of polynomials; Galois groups and prime ideals; Cyclotomic extensions and abelian numbers.

Download or read it online for free here:
Download link
(520KB, PDF)

Similar books

Book cover: The Elements of the Theory of Algebraic NumbersThe Elements of the Theory of Algebraic Numbers
by - The Macmillan company
It has been my endeavor in this book to lead by easy stages a reader, entirely unacquainted with the subject, to an appreciation of some of the fundamental conceptions in the general theory of algebraic numbers. Many numerical examples are given.
(4342 views)
Book cover: Galois Theory: Lectures Delivered at the University of Notre DameGalois Theory: Lectures Delivered at the University of Notre Dame
by - University of Notre Dame
The book deals with linear algebra, including fields, vector spaces, homogeneous linear equations, and determinants, extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, and more.
(577 views)
Book cover: Generic Polynomials: Constructive Aspects of the Inverse Galois ProblemGeneric Polynomials: Constructive Aspects of the Inverse Galois Problem
by - Cambridge University Press
A clearly written book, which uses exclusively algebraic language (and no cohomology), and which will be useful for every algebraist or number theorist. It is easily accessible and suitable also for first-year graduate students.
(9804 views)
Book cover: Lectures on Field Theory and Ramification TheoryLectures on Field Theory and Ramification Theory
by - Indian Institute of Technology, Bombay
These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.
(4875 views)