A Course In Algebraic Number Theory
by Robert B. Ash
Publisher: University of Illinois 2003
Description:
This is a text for a basic course in algebraic number theory, written to provide reasonable coverage for a one-semester course. The text covers the general theory of factorization of ideals in Dedekind domains, detailed calculations illustrating the use of Kummer’s theorem, the factorization of prime ideals in Galois extensions, local and global fields, etc. A standard graduate course in algebra is assumed as prerequisite.
Download or read it online for free here:
Download link
(multiple PDF files)
Similar books

by F. Oggier - Nanyang Technological University
Contents: Algebraic numbers and algebraic integers (Rings of integers, Norms and Traces); Ideals (Factorization and fractional ideals, The Chinese Theorem); Ramification theory; Ideal class group and units; p-adic numbers; Valuations; p-adic fields.
(9821 views)

by J. S. Milne
These are preliminary notes for a modern account of the theory of complex multiplication. The reader is expected to have a good knowledge of basic algebraic number theory, and basic algebraic geometry, including abelian varieties.
(10128 views)

by Henri Darmon, Shou-Wu Zhang - Cambridge University Press
This volume has the Gross-Zagier formula and its avatars as a common unifying theme. It covers the theory of complex multiplication, automorphic forms, the Rankin-Selberg method, arithmetic intersection theory, Iwasawa theory, and other topics.
(8523 views)

by Y. Kitaoka - Tata Institute of Fundamental Research
This book is concerned with the problem of representation of positive definite quadratic forms by other such forms. From the table of contents: Preface; Fourier Coefficients of Siegel Modular Forms; Arithmetic of Quadratic Forms.
(6876 views)