Logo

A Course In Algebraic Number Theory

A Course In Algebraic Number Theory
by

Publisher: University of Illinois

Description:
This is a text for a basic course in algebraic number theory, written to provide reasonable coverage for a one-semester course. The text covers the general theory of factorization of ideals in Dedekind domains, detailed calculations illustrating the use of Kummer’s theorem, the factorization of prime ideals in Galois extensions, local and global fields, etc. A standard graduate course in algebra is assumed as prerequisite.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Heegner Points and Rankin L-SeriesHeegner Points and Rankin L-Series
by - Cambridge University Press
This volume has the Gross-Zagier formula and its avatars as a common unifying theme. It covers the theory of complex multiplication, automorphic forms, the Rankin-Selberg method, arithmetic intersection theory, Iwasawa theory, and other topics.
(5378 views)
Book cover: An Introduction to Algebraic Number TheoryAn Introduction to Algebraic Number Theory
by - Nanyang Technological University
Contents: Algebraic numbers and algebraic integers (Rings of integers, Norms and Traces); Ideals (Factorization and fractional ideals, The Chinese Theorem); Ramification theory; Ideal class group and units; p-adic numbers; Valuations; p-adic fields.
(6218 views)
Book cover: Lectures on Siegel Modular Forms and Representation by Quadratic FormsLectures on Siegel Modular Forms and Representation by Quadratic Forms
by - Tata Institute of Fundamental Research
This book is concerned with the problem of representation of positive definite quadratic forms by other such forms. From the table of contents: Preface; Fourier Coefficients of Siegel Modular Forms; Arithmetic of Quadratic Forms.
(3741 views)
Book cover: Notes on the Theory of Algebraic NumbersNotes on the Theory of Algebraic Numbers
by - arXiv
This is a series of lecture notes on the elementary theory of algebraic numbers, using only knowledge of a first-semester graduate course in algebra (primarily groups and rings). No prerequisite knowledge of fields is required.
(2880 views)