Logo

A Course In Algebraic Number Theory

A Course In Algebraic Number Theory
by

Publisher: University of Illinois

Description:
This is a text for a basic course in algebraic number theory, written to provide reasonable coverage for a one-semester course. The text covers the general theory of factorization of ideals in Dedekind domains, detailed calculations illustrating the use of Kummer’s theorem, the factorization of prime ideals in Galois extensions, local and global fields, etc. A standard graduate course in algebra is assumed as prerequisite.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Heegner Points and Rankin L-SeriesHeegner Points and Rankin L-Series
by - Cambridge University Press
This volume has the Gross-Zagier formula and its avatars as a common unifying theme. It covers the theory of complex multiplication, automorphic forms, the Rankin-Selberg method, arithmetic intersection theory, Iwasawa theory, and other topics.
(4080 views)
Book cover: Introduction to Algebraic Number TheoryIntroduction to Algebraic Number Theory
by - University of Washington
Topics in this book: Rings of integers of number fields; Unique factorization of ideals in Dedekind domains; Structure of the group of units of the ring of integers; Finiteness of the group of equivalence classes of ideals of the ring of integers...
(6540 views)
Book cover: Notes on the Theory of Algebraic NumbersNotes on the Theory of Algebraic Numbers
by - arXiv
This is a series of lecture notes on the elementary theory of algebraic numbers, using only knowledge of a first-semester graduate course in algebra (primarily groups and rings). No prerequisite knowledge of fields is required.
(1856 views)
Book cover: Lectures on Field Theory and Ramification TheoryLectures on Field Theory and Ramification Theory
by - Indian Institute of Technology, Bombay
These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.
(4593 views)