**Heegner Points and Rankin L-Series**

by Henri Darmon, Shou-Wu Zhang

**Publisher**: Cambridge University Press 2004**ISBN/ASIN**: 052183659X**ISBN-13**: 9780521836593**Number of pages**: 382

**Description**:

This volume, based on a workshop on Special Values of Rankin L-Series held at the MSRI in December 2001, is a collection of articles written by many of the leading contributors in the field, having the Gross-Zagier formula and its avatars as a common unifying theme. It serves as a valuable reference for mathematicians wishing to become better acquainted with the theory of complex multiplication, automorphic forms, the Rankin-Selberg method, arithmetic intersection theory, Iwasawa theory, and other topics related to the Gross-Zagier formula.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Algebraic Number Theory**

by

**J.S. Milne**

Contents: Preliminaries From Commutative Algebra; Rings of Integers; Dedekind Domains; Factorization; The Finiteness of the Class Number; The Unit Theorem; Cyclotomic Extensions; Fermat's Last Theorem; Valuations; Local Fields; Global Fields.

(

**9398**views)

**An Introduction to Algebraic Number Theory**

by

**F. Oggier**-

**Nanyang Technological University**

Contents: Algebraic numbers and algebraic integers (Rings of integers, Norms and Traces); Ideals (Factorization and fractional ideals, The Chinese Theorem); Ramification theory; Ideal class group and units; p-adic numbers; Valuations; p-adic fields.

(

**5297**views)

**Notes on the Theory of Algebraic Numbers**

by

**Steve Wright**-

**arXiv**

This is a series of lecture notes on the elementary theory of algebraic numbers, using only knowledge of a first-semester graduate course in algebra (primarily groups and rings). No prerequisite knowledge of fields is required.

(

**2089**views)

**Complex Multiplication**

by

**J. S. Milne**

These are preliminary notes for a modern account of the theory of complex multiplication. The reader is expected to have a good knowledge of basic algebraic number theory, and basic algebraic geometry, including abelian varieties.

(

**5379**views)