**Heegner Points and Rankin L-Series**

by Henri Darmon, Shou-Wu Zhang

**Publisher**: Cambridge University Press 2004**ISBN/ASIN**: 052183659X**ISBN-13**: 9780521836593**Number of pages**: 382

**Description**:

This volume, based on a workshop on Special Values of Rankin L-Series held at the MSRI in December 2001, is a collection of articles written by many of the leading contributors in the field, having the Gross-Zagier formula and its avatars as a common unifying theme. It serves as a valuable reference for mathematicians wishing to become better acquainted with the theory of complex multiplication, automorphic forms, the Rankin-Selberg method, arithmetic intersection theory, Iwasawa theory, and other topics related to the Gross-Zagier formula.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Notes on the Theory of Algebraic Numbers**

by

**Steve Wright**-

**arXiv**

This is a series of lecture notes on the elementary theory of algebraic numbers, using only knowledge of a first-semester graduate course in algebra (primarily groups and rings). No prerequisite knowledge of fields is required.

(

**6273**views)

**Complex Multiplication**

by

**J. S. Milne**

These are preliminary notes for a modern account of the theory of complex multiplication. The reader is expected to have a good knowledge of basic algebraic number theory, and basic algebraic geometry, including abelian varieties.

(

**10129**views)

**An Introduction to Algebraic Number Theory**

by

**F. Oggier**-

**Nanyang Technological University**

Contents: Algebraic numbers and algebraic integers (Rings of integers, Norms and Traces); Ideals (Factorization and fractional ideals, The Chinese Theorem); Ramification theory; Ideal class group and units; p-adic numbers; Valuations; p-adic fields.

(

**9821**views)

**Lectures on Field Theory and Ramification Theory**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology, Bombay**

These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.

(

**9523**views)