Logo

Introduction to Algebraic Number Theory

Small book cover: Introduction to Algebraic Number Theory

Introduction to Algebraic Number Theory
by

Publisher: University of Washington
Number of pages: 140

Description:
Topics in this book: Rings of integers of number fields; Unique factorization of ideals in Dedekind domains; Structure of the group of units of the ring of integers; Finiteness of the group of equivalence classes of ideals of the ring of integers; Decomposition and inertia groups, Frobenius elements; Ramification; Discriminant and different; Quadratic and biquadratic fields; etc.

Home page url

Download or read it online for free here:
Download link
(820KB, PDF)

Similar books

Book cover: Notes on the Theory of Algebraic NumbersNotes on the Theory of Algebraic Numbers
by - arXiv
This is a series of lecture notes on the elementary theory of algebraic numbers, using only knowledge of a first-semester graduate course in algebra (primarily groups and rings). No prerequisite knowledge of fields is required.
(2227 views)
Book cover: A Course In Algebraic Number TheoryA Course In Algebraic Number Theory
by - University of Illinois
Basic course in algebraic number theory. It covers the general theory of factorization of ideals in Dedekind domains, the use of Kummer’s theorem, the factorization of prime ideals in Galois extensions, local and global fields, etc.
(9720 views)
Book cover: Lectures on Siegel Modular Forms and Representation by Quadratic FormsLectures on Siegel Modular Forms and Representation by Quadratic Forms
by - Tata Institute of Fundamental Research
This book is concerned with the problem of representation of positive definite quadratic forms by other such forms. From the table of contents: Preface; Fourier Coefficients of Siegel Modular Forms; Arithmetic of Quadratic Forms.
(3163 views)
Book cover: An Introduction to Algebraic Number TheoryAn Introduction to Algebraic Number Theory
by - Nanyang Technological University
Contents: Algebraic numbers and algebraic integers (Rings of integers, Norms and Traces); Ideals (Factorization and fractional ideals, The Chinese Theorem); Ramification theory; Ideal class group and units; p-adic numbers; Valuations; p-adic fields.
(5491 views)