Logo

Introduction to Algebraic Number Theory

Small book cover: Introduction to Algebraic Number Theory

Introduction to Algebraic Number Theory
by

Publisher: University of Washington
Number of pages: 140

Description:
Topics in this book: Rings of integers of number fields; Unique factorization of ideals in Dedekind domains; Structure of the group of units of the ring of integers; Finiteness of the group of equivalence classes of ideals of the ring of integers; Decomposition and inertia groups, Frobenius elements; Ramification; Discriminant and different; Quadratic and biquadratic fields; etc.

Home page url

Download or read it online for free here:
Download link
(820KB, PDF)

Similar books

Book cover: A Course In Algebraic Number TheoryA Course In Algebraic Number Theory
by - University of Illinois
Basic course in algebraic number theory. It covers the general theory of factorization of ideals in Dedekind domains, the use of Kummer’s theorem, the factorization of prime ideals in Galois extensions, local and global fields, etc.
(9515 views)
Book cover: Lectures on Topics in Algebraic Number TheoryLectures on Topics in Algebraic Number Theory
by - Indian Institute of Technology, Bombay
These lecture notes give a rapid introduction to some basic aspects of Algebraic Number Theory with as few prerequisites as possible. Topics: Field Extensions; Ring Extensions; Dedekind Domains and Ramification Theory; Class Number and Lattices.
(5352 views)
Book cover: Complex MultiplicationComplex Multiplication
by
These are preliminary notes for a modern account of the theory of complex multiplication. The reader is expected to have a good knowledge of basic algebraic number theory, and basic algebraic geometry, including abelian varieties.
(5336 views)
Book cover: Lectures on Field Theory and Ramification TheoryLectures on Field Theory and Ramification Theory
by - Indian Institute of Technology, Bombay
These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.
(4869 views)