**Algorithmic Number Theory**

by J.P. Buhler, P. Stevenhagen

**Publisher**: Cambridge University Press 2008**ISBN/ASIN**: 0521808545**ISBN-13**: 9780521808545**Number of pages**: 662

**Description**:

Algorithmic number theory has gradually emerged as an important and distinct field with connections to computer science and cryptography as well as other areas of mathematics. This text provides a comprehensive introduction to algorithmic number theory for beginning graduate students, written by the leading experts in the field. It includes several articles that cover the essential topics in this area, such as the fundamental algorithms of elementary number theory, lattice basis reduction, elliptic curves, algebraic number fields, and methods for factoring and primality proving.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Surfing on the ocean of numbers**

by

**Henry Ibstedt**-

**Erhus University Press**

The author uses computers to explore the solutions to some problems in number theory. The emphasis is on the statement of a problem and the examination of the solutions for numbers in a selected range. Many of the problems are very hard.

(

**8875**views)

**Smooth Numbers: Computational Number Theory and Beyond**

by

**Andrew Granville**-

**Universite de Montreal**

The analysis of many number theoretic algorithms turns on the role played by integers which have only small prime factors -- 'smooth numbers'. It is important to have accurate estimates for the number of smooth numbers in various sequences.

(

**5419**views)

**Computer analysis of number sequences**

by

**Henry Ibstedt**-

**American Research Press**

This is a book on empirical number theory concentrating on the analysis of number sequences. Its focus is on a small part of integer sequences defined by Florentin Smarandache. The author has also included some other results of his research.

(

**9818**views)

**Modular Forms: A Computational Approach**

by

**William A. Stein**-

**American Mathematical Society**

This book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments.

(

**6388**views)