**Notes on Classical Groups**

by Peter J. Cameron

**Publisher**: Queen Mary and Westfield College 2000**Number of pages**: 96

**Description**:

These notes are the content of an M.Sc. course the author gave at Queen Mary and Westfield College, London. Contents: Fields and vector spaces; Linear and projective groups; Polarities and forms; Symplectic groups; Unitary groups; Orthogonal groups; Klein correspondence and triality; A short bibliography on classical groups.

Download or read it online for free here:

**Download link**

(340KB, PDF)

## Similar books

**Group Theory: Birdtracks, Lie's, and Exceptional Groups**

by

**Predrag Cvitanovic**-

**Princeton University Press**

A book on the theory of Lie groups for researchers and graduate students in theoretical physics and mathematics. It answers what Lie groups preserve trilinear, quadrilinear, and higher order invariants. Written in a lively and personable style.

(

**15993**views)

**Introductory Treatise On Lie's Theory Of Finite Continuous Transformation Groups**

by

**John Edward Campbell**-

**Oxford Clarendon Press**

In this treatise an attempt is made to give, in as elementary a form as possible, the main outlines of Lie's theory of Continuous Groups. Even those familiar with the theory may find something new in the form in which the theory is here presented.

(

**7233**views)

**Lie Groups, Physics, and Geometry**

by

**Robert Gilmore**-

**Drexel University**

The book emphasizes the most useful aspects of Lie groups, in a way that is easy for students to acquire and to assimilate. It includes a chapter dedicated to the applications of Lie group theory to solving differential equations.

(

**12453**views)

**Algebraic Groups, Lie Groups, and their Arithmetic Subgroups**

by

**J. S. Milne**

This work is a modern exposition of the theory of algebraic group schemes, Lie groups, and their arithmetic subgroups. Algebraic groups are groups defined by polynomials. Those in this book can all be realized as groups of matrices.

(

**12729**views)