**Lie groups and Lie algebras**

by N. Reshetikhin, V. Serganova, R. Borcherds

**Publisher**: UC Berkeley 2006**Number of pages**: 179

**Description**:

From the table of contents: Tangent Lie algebras to Lie groups; Simply Connected Lie Groups; Hopf Algebras; The PBW Theorem and Deformations; Lie algebra cohomology; Engel's Theorem and Lie's Theorem; Cartan Criterion, Whitehead and Weyl Theorems; etc.

Download or read it online for free here:

**Download link**

(1.5MB, PDF)

## Similar books

**Lectures on Algebraic Groups**

by

**Alexander Kleshchev**-

**University of Oregon**

Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.

(

**8140**views)

**Frobenius Splittings and B-Modules**

by

**Wilberd van der Kallen**-

**Springer**

The course given by the author in 1992 explains the solution by O. Mathieu of some conjectures in the representation theory of arbitrary semisimple algebraic groups. The conjectures concern filtrations of 'standard' representations.

(

**5600**views)

**Finite Group Schemes**

by

**Richard Pink**-

**ETH Zurich**

The aim of the lecture course is the classification of finite commutative group schemes over a perfect field of characteristic p, using the classical approach by contravariant Dieudonne theory. The theory is developed from scratch.

(

**6269**views)

**Elements of Group Theory**

by

**F. J. Yndurain**-

**arXiv**

The following notes are the basis for a graduate course. They are oriented towards the application of group theory to particle physics, although some of it can be used for general quantum mechanics. They have no pretense of mathematical rigor.

(

**11884**views)