**An Elementary Introduction to Groups and Representations**

by Brian C. Hall

**Publisher**: arXiv 2000**Number of pages**: 128

**Description**:

These notes give an elementary introduction to Lie groups, Lie algebras, and their representations. Designed to be accessible to graduate students in mathematics or physics, they have a minimum of prerequisites. Topics include definitions and examples of Lie groups and Lie algebras, the relationship between Lie groups and Lie algebras via the exponential mapping, the basics of representations theory, the Baker-Campbell-Hausdorff formula, a detailed study of the representations of SU(3), and a brief survey of the representation theory of general semisimple groups.

Download or read it online for free here:

**Download link**

(950KB, PDF)

## Similar books

**Thin Groups and Superstrong Approximation**

by

**Emmanuel Breuillard, Hee Oh (eds.)**-

**Cambridge University Press**

This book focuses on recent developments concerning various quantitative aspects of thin groups. It provides a broad panorama of a very active field of mathematics at the boundary between geometry, dynamical systems, number theory, and combinatorics.

(

**1946**views)

**Group Characters, Symmetric Functions, and the Hecke Algebra**

by

**David M. Goldschmidt**-

**American Mathematical Society**

The book covers a set of interrelated topics, presenting a self-contained exposition of the algebra behind the Jones polynomial along with various excursions into related areas. Directed at graduate students and mathematicians.

(

**7242**views)

**An Introduction to Group Theory: Applications to Mathematical Music Theory**

by

**Flor Aceff-Sanchez, et al.**-

**BookBoon**

In this text, a modern presentation of the fundamental notions of Group Theory is chosen, where the language of commutative diagrams and universal properties, so necessary in Modern Mathematics, in Physics and Computer Science, is introduced.

(

**5943**views)

**Theory of Groups of Finite Order**

by

**William Burnside**-

**Cambridge University Press**

After introducing permutation notation and defining group, the author discusses the simpler properties of group that are independent of their modes of representation; composition-series of groups; isomorphism of a group with itself; etc.

(

**5601**views)